


Data as Code - The ThingsDB Book
Author
Jeroen van der Heijden

Editors
Anja Bruls
Sasha Tychkovska

Copyright © 2024



"I extend my heartfelt gratitude to Rik, Anja, Koos, Sasha
and Iris for their invaluable contributions to the creation of

this book."



Table of Contents
Preface 9
Installation 10

Installation - Node 11
Docker 12
Linux 15
Mac 17
Windows (WSL) 19

Installation - Python 21
Installation - ThingsDB Prompt 22

Getting Started - Initial Setup 23
Chapter 1 - Introduction to ThingsDB 25

1.1 Things and Why ThingsDB 28
1.2 Code Blocks 29
1.3 Variables and Properties 29
1.4 Lazy Arguments Evaluation 31
1.5 Query Response 31
1.6 Scopes 32
1.7 Quiz - Challenge Your Understanding 35

1.7.1 Quiz - Answers 36
Chapter 2 - Integers, Floating Points, Booleans, Strings and Nil 38

2.1 Integers 38
2.2 Floating Points 40
2.3 Numeric Tools 41
2.4 Boolean 42
2.5 Strings 43

2.5.1 String Methods 45
2.5.2 Escaping and Multi-line Strings 46
2.5.3 Concatenation and t-strings 46

2.6 Nil 47
2.6.1 Avoiding Ambiguity with Nil as a Placeholder 48

2.7 Errors 48
2.7.1 Capture Errors 49

2.8 Quiz - Challenge Your Understanding 51
2.8.1 Quiz - Answers 52

Chapter 3 - Lists and Tuples 53
3.1 Lists 53

3.1.1 Bounds Checking 54
3.1.2 Reference and Maintained Lists 55

3.2 Nesting and tuples 56
3.3 Looping Over a List or Tuple 57
3.4 Specialized Methods 60
3.5 Lists for Multi-Value Returns 60
3.6 Quiz - Challenge Your Understanding 62

3.6.1 Quiz - Answers 63



Chapter 4 - Things 64
4.1 Things for Descriptive Multi-Value Returns 65
4.2 Thing IDs 65
4.3 Control Response with return Statement 68
4.4 Looping Over a Thing 69
4.5 Value Restriction 70
4.6 Self-References 71
4.7 Quiz - Challenge Your Understanding 73

4.7.1 Quiz - Answers 74
Chapter 5 - Sets 75

5.1 Set Operations 76
5.1.1 Identifying Birds Not in the Zoo 77
5.1.2 Selecting Warm-Blooded Animals in the Zoo 78

5.2 Determining Set Membership and Supersets/Subsets 78
5.2.1 Verifying Set Membership 78
5.2.2 Checking Subsets and Supersets 79

5.3 Copy or Reference 79
5.4 Quiz - Challenge Your Understanding 81

5.4.1 Quiz - Answers 82
Chapter 6 - Procedures 83

6.1 Side Effects and Changes 84
6.2 Python 85

6.2.1 Run Procedure 86
6.2.2 Perform a Query 86
6.2.3 Prevent Code Injections 87
6.2.4 Migrating from Query to Procedure 88

6.3 Requesting Procedure Information 89
6.3.1 Extracting Properties from Information Objects 89
6.3.2 Additional Procedure Functions 90

6.4 Thinking Ahead 90
6.5 Quiz - Challenge Your Understanding 93

6.5.1 Quiz - Answers 94
Chapter 7 - Typed Things 96

7.1 Create Your First Type 96
7.1.1 Enhancing the Todo Type using mod_type() 97
7.1.2 Customizing ID Representation in Responses 99

7.2 Collection Structure with Types 99
7.3 Retrieving Typed Things by ID 101
7.4 Type Methods 101
7.5 Type Information 103
7.6 Removing a Type 103

7.6.1 Dependency Considerations 104
7.7 More Definitions 104
7.8 Quiz - Challenge Your Understanding 105

7.8.1 Quiz - Answers 106
Chapter 8 - Date, Time and Tasks 107

8.1 Timestamps vs. Datetime 107



8.1.1 Bridging the Gap Between Datetime and Timestamp 109
8.2 Enhancing Todo with Datetime Properties 110
8.3 Scheduling Code Execution with Tasks 111

8.3.1 Cancel or Delete a Task 112
8.3.2 Repeating Tasks 113
8.3.3 Status for Repeating Task 113
8.3.4 Deleting All Tasks with a Single Statement 114

8.4 Farewell, done Property 114
8.5 Quiz - Challenge Your Understanding 116

8.5.1 Quiz - Answers 117
Chapter 9 - Two-Way Links 119

9.1 Introducing Relations 121
9.2 Exploring More Relations 122

9.2.1 One-on-One Relationship 122
9.2.2 Many-to-Many Relationship 124

9.3 Creating Relations: A Deeper Look 124
9.4 Code Cleanup 125
9.5 Quiz - Challenge Your Understanding 127

9.5.1 Quiz - Answers 128
Chapter 10 - Control Responses 129

10.1 The Power of Wrap-Only Types 129
10.2 Update Search To-do's 132
10.3 Wrap Every-Thing 133
10.4 Modifying Wrap-Only and Hide-ID Flags 134
10.5 Quiz - Challenge Your Understanding 136

10.5.1 Quiz - Answers 138
Chapter 11 - Flags, Enumerators and Regex 139

11.1 Crafting Your First Enumerator 139
11.1.1 Setting the Default Member of an Enumerator 139
11.1.2 Working with Enumerator Methods 140
11.1.3 Retrieving Enumerator Members 141
11.1.4 Enumerator Validation 141

11.2 Enumerator Information 142
11.2.1 Enumerator Members 142

11.3 Modifying Enumerators 143
11.4 Implementation and Other Enumerator Solutions 143

11.4.1 Revisiting Range Definitions 143
11.4.2 Regular Expressions using Regex 144
11.4.3 Transitioning to the Enumerator 146
11.4.4 Wrap-Only Types with Enumerators 146

11.5 Understanding Flags 147
11.5.1 Using Enumerators to Store Flags 147
11.5.2 Working with Flags 148

11.6 Quiz - Challenge Your Understanding 150
11.6.1 Quiz - Answers 151

Chapter 12 - Real-Time Data Updates with Events and Rooms 153
12.1 Rooms 153



12.1.1 Sending Your First Message via Events 154
12.2 Listen for Events 155

12.2.1 Creating Your Dashboard Listener 155
12.3 Retrieving Initial Dashboard State 157

12.3.1 Integration of the Initial State 158
12.3.2 Implement Event Handlers 159
12.3.3 Test Your Dashboard in Action! 160

12.4 Room for More 161
12.5 Quiz - Challenge Your Understanding 162

12.5.1 Quiz - Answers 163
Chapter 13 - Futures and Modules 164

13.1 Demystifying Futures: Waiting with Purpose 164
13.1.1 Using the Future's Task Result 164
13.1.2 Empty Futures: Isolating Side Effects for Efficiency 166
13.1.3 Caution! Futures Don't Always Behave Like Values 167

13.2 Enhance Your ThingsDB with Modules 167
13.2.1 Install The Demo Module 168
13.2.2 Unleashing the Module's Power 164
13.2.3 Sending NTFYs with the HTTP(S) Request Module 170
13.2.4 Talking to Yourself: Connecting ThingsDB Scopes 171

13.3 Managing Your Modules: Access, Updates, and More 172
13.3.1 Controlling Module Access 173
13.3.2 Multiple Configurations, Multiple Installations 173
13.3.3 Keeping Your Modules Up-to-Date 173

13.4 Quiz - Challenge Your Understanding 174
13.4.1 Quiz - Answers 176

Chapter 14 - Safeguarding Your Data 178
14.1 Node Scopes for Backups 178
14.2 Your First Backup 179
14.3 Restoring Your Data 181

14.3.1 Restoring Data from a Multi-Node Setup 182
14.4 Automating Your Backups 183

14.4.1 Ensuring Backup Health 184
14.4.2 Google Cloud Storage 184

14.5 Exporting and Importing Collections 185
14.5.1 Exporting Collection Schemas 186

14.6 Choosing Your Tool: Backups vs. Exports 187
14.7 Quiz - Challenge Your Understanding 188

14.7.1 Quiz - Answers 189
Chapter 15 - Multiple Nodes and Debugging 190

15.1 Scaling Up: Adding Nodes 190
15.1.1 ThingsDB from Source 190
15.1.2 Using Docker Compose 192

15.2 Invite the New Node 192
15.3 Node Counters 194
15.4 Diving Deeper with Node Information 195
15.5 New Version, Upgrade 197



15.5.1 Understanding the HTTP Status Port 197
15.5.2 Using the /ready URL 197
15.5.3 Liveness and Readiness 198

15.6 Data Related Debugging 198
15.6.1 Checking References 198
15.6.2 Finding Things 199
15.6.3 Profiling Code Performance 200

15.7 Quiz - Challenge Your Understanding 202
15.7.1 Quiz - Answers 203

Chapter 16: Unleashing the Power of the HTTP API 204
16.1 Enabling the API 204
16.2 Exploring Your First API Call 205

16.2.1 Securing Admin Credentials 205
16.2.2 Token Authentication 206

16.3 Running Procedures with the API 207
16.4 MessagePack vs JSON for the API 208
16.5 Quiz - Challenge Your Understanding 210

16.5.1 Quiz - Answers 211
Closing Note 212
Appendix I - Chapter Data Import 213
Appendix II - Useful Links for ThingsDB 214

General information 214
Applications 214
Connectors 214
Modules 214
Deployment 215
Downloads 215

About the Author 216



Preface
The primary objective of this book is to equip readers with a comprehensive
understanding of how ThingsDB functions. It is not intended to be an all-
inclusive reference guide and therefore does not cover every aspect of the
platform. ThingsDB can be applied in a diverse range of applications, and
once its potential is fully grasped, it has the power to inspire novel and
innovative solutions. Our aim is to provide a balanced overview of ThingsDB's
capabilities while also fostering creativity and encouraging readers to explore
its multifaceted applications.

Consistent with a simplified approach, we present code blocks in this book
without syntax highlighting. While sophisticated IDEs like vscode and
dedicated tools like things-prompt and ThingsGUI provide syntax highlighting,
coloring known functions, punctuation, etc., we've adopted a more
straightforward approach for this book.

Dark blue for prompts

Orange for code that the user needs to enter

Green for comments

Light blue for responses

The first five chapters of this book can be read independently of each other
and can be skipped if you have a strong grasp of the concepts covered. You
can assess your understanding by completing the quizzes at the end of each
chapter. However, from chapter 6 until chapter 13, the book will focus on
developing a "to-do" application using the "todos" collection. The concepts
introduced in these chapters build upon each other, making it essential to
follow them in sequence to execute the code examples and fully comprehend
the presented material. If you really want to jump directly into a specific
chapter, you can download the necessary collection state from our website,
which is explained in Appendix I - Chapter Data Import.

9



Installation
Like with learning any programming language, ThingsDB requires a setup to
execute code examples. This setup includes at least one ThingsDB node,
which acts as the interpreter responsible for executing the code. Throughout
the first chapters of this book, we will primarily communicate with ThingsDB
using the "things-prompt" application, a tool designed for running small code
snippets. As we progress, we will delve into more practical examples and
explore the realm of event-driven programming, showcasing the true power of
ThingsDB when interacting with other programming languages. While this
book includes some Python examples, you are free to choose a language that
suits your preference, such as C#, Go, PHP, JavaScript/Node.js or another
supported language. The provided examples are relatively straightforward to
adapt to other programming languages.

10



Installation - Node
The process running ThingsDB is called a node. ThingsDB is built to run
across multiple nodes for high availability and scalability but for most chapters
in this book, running a single node will suffice.

Exploring Multiple Nodes:

If you are interested in experimenting with distributed setups, you can run
multiple ThingsDB nodes on your machine. However, this involves manually
setting up each node with unique data paths and ports (covered in detail in
Chapter 15). Be aware that this process can be cumbersome.

Docker to the Rescue:

Docker offers a simpler and more efficient way to manage multiple ThingsDB
nodes. Docker is a containerization platform that packages applications and
their dependencies into self-contained units, ensuring consistent and portable
environments.

11



Docker

This guide will walk you through installing and running ThingsDB using Docker
Compose, a convenient tool for managing Docker configurations.

Prefer manual installation? Skip this section and proceed to the
guide for installing ThingsDB from source code on your specific
operating system Linux, Mac, or Windows (WSL). Choose the
instructions that match your system.

If you do not already have Docker installed, you can download it from here:
https://docs.docker.com/get-docker/

Check your docker version: (version 23 or higher is required)

$ docker -v

Docker version 25.0.3, build 4debf41

Create a project directory and navigate to that directory:

$ mkdir thingsdb_book

$ cd thingsdb_book

~/thingsdb_book$

Paste the following content into a new file named docker-compose.yml in your
project directory: (or download the file from here:
https://docs.thingsdb.io/v1/book/docker-compose.yml)

12

https://docs.docker.com/get-docker/
https://docs.thingsdb.io/v1/book/docker-compose.yml


x-ti-template: &ti

image: ghcr.io/thingsdb/node

restart: unless-stopped

environment:

- THINGSDB_BIND_CLIENT_ADDR = '::'

- THINGSDB_BIND_NODE_ADDR = '::'

- THINGSDB_HTTP_API_PORT = 9210

- THINGSDB_HTTP_STATUS_PORT = 8080

- THINGSDB_WS_PORT=9270

- THINGSDB_MODULES_PATH = /modules/

- THINGSDB_STORAGE_PATH = /data/

services:

node0:

<< : *ti

hostname: node0

container_name: node0

command: "--init"

ports:

- 9200:9200

- 9210:9210

- 9270:9270

- 8080:8080

volumes:

- ./node0/data:/data/

- ./node0/modules:/modules/

- ./node0/dump:/dump/

## Uncomment the following sections to add more nodes (optional)

# node1:

#   << : *ti

#   hostname: node1

#   container_name: node1

#   command: "--secret pass"

#   ports:

#     - 8081:8080

#   volumes:

#     - ./node1/data:/data/

#     - ./node1/modules:/modules/

#     - ./node1/dump:/dump/

Make sure you are in the directory where your docker-compose.yml file is
located and run the following command to pull the image:

~/thingsdb_book$ docker compose pull

…

Use this command to launch ThingsDB as a persistent background service:

~/thingsdb_book$ docker compose up -d

[+] Running 1/1

✔ Container node0  Started

13



You'll see output indicating that the container is starting. Don't worry if
only one node is initially active; you can learn about scaling to multiple
nodes in Chapter 15.

You've successfully set up Docker. Let's move on to installing Python.

14



Linux

While building ThingsDB from source is possible on various Linux
distributions, this documentation details the process for Ubuntu due to its
popularity. We recognize other distributions might work, but they are outside
the scope of this guide.

Step 1: Update and Install Packages:

Start with updating the packages list:

$ sudo apt update

…

Then, install the required packages:

$ sudo apt-get install -y \

libuv1-dev \

libpcre2-dev \

libyajl-dev \

libcurl4-nss-dev \

libssl-dev \

build-essential \

cmake \

git

…

Step 3: Clone and Build ThingsDB

Clone the ThingsDB repository:

$ git clone https://github.com/thingsdb/ThingsDB.git

…

Build ThingsDB:

$ ./ThingsDB/release-build.sh

…

Step 4: Create a Symlink (Optional)

To easily start ThingsDB from any directory, create a symlink:

$ sudo ln -sr ./ThingsDB/thingsdb /usr/bin/thingsdb

15



Step 5: Verify Installation

Check if ThingsDB is installed correctly:

$ thingsdb --version

_____ _   _             ____  _____

|_   _| |_|_|___ ___ ___|    \| __  |

| | |   | |   | . |_ -|  |  | __ -|

|_| |_|_|_|_|_|_  |___|____/|_____|   version: 1.6.0

|___|

ThingsDB Node 1.6.0

Maintainer: Jeroen van der Heijden <jeroen@cesbit.com>

Home-page: https://thingsdb.io

You've successfully built ThingsDB from source. Let's move on to
installing Python.

16



Mac

The section describes building ThingsDB on MacOS.

Prerequisites:
MacOS with Homebrew installed: If you do not have Homebrew
installed, follow the instructions on https://brew.sh
An active Internet connection

Step 1: Update and Install Packages

Update the package lists:

% brew update

…

Then, install necessary packages:

% brew install cmake libuv pcre2 yajl curl

…

Step 2: Clone and Build ThingsDB

Clone the ThingsDB repository:

% git clone https://github.com/thingsdb/ThingsDB.git

…

Build ThingsDB:

% ./ThingsDB/release-build.sh

…

Step 3: Create a Symlink (Optional)

To easily start ThingsDB from any directory, create a symlink:

% ln -s ~/ThingsDB/thingsdb /opt/homebrew/bin/thingsdb

Step 4: Verify Installation

Check if ThingsDB is installed correctly:

17

https://brew.sh/


% thingsdb --version

_____ _   _             ____  _____

|_   _| |_|_|___ ___ ___|    \| __  |

| | |   | |   | . |_ -|  |  | __ -|

|_| |_|_|_|_|_|_  |___|____/|_____|   version: 1.6.0

|___|

ThingsDB Node 1.6.0

Maintainer: Jeroen van der Heijden <jeroen@cesbit.com>

Home-page: https://thingsdb.io

Next Steps:

Now you can start ThingsDB by typing thingsdb in your terminal. Let's move
on to installing Python.

18



Windows (WSL)

While ThingsDB does not run natively on Windows, you can leverage WSL
(Windows Subsystem for Linux) to create a Linux environment and enjoy all
its functionalities! Here's how:

Prerequisites:
Windows 10 version 1903 or later (with WSL 2 enabled): Check your
version and enable WSL if needed:
https://learn.microsoft.com/en-us/windows/wsl/
An active Internet connection

Step 1: Install Ubuntu

Open a PowerShell window and run:

PS C:\Users\admin> wsl --install -d Ubuntu

Installing: Ubuntu

…

Follow the on-screen instructions to provide a username and password for
your Ubuntu environment.

Step 2: Update and Install Packages

Once Ubuntu is installed, open a WSL terminal (start menu > search for
"Ubuntu") and update the package lists:

ti@LAPTOP:~$ sudo apt update

…

Then, install necessary packages:

ti@LAPTOP:~$ sudo apt-get install -y \

libuv1-dev \

libpcre2-dev \

libyajl-dev \

libcurl4-nss-dev \

libssl-dev \

build-essential \

cmake

…

Step 3: Clone and Build ThingsDB

Clone the ThingsDB repository:

19

https://learn.microsoft.com/en-us/windows/wsl/


ti@LAPTOP:~$ git clone https://github.com/thingsdb/ThingsDB.git

…

Build ThingsDB:

ti@LAPTOP:~$ ./ThingsDB/release-build.sh

…

Step 4: Create a Symlink (Optional)

To easily start ThingsDB from any directory, create a symlink:

ti@LAPTOP:~$ sudo ln -sr ./ThingsDB/thingsdb /usr/bin/thingsdb

Step 5: Verify Installation

Check if ThingsDB is installed correctly:

ti@LAPTOP:~$ thingsdb --version

_____ _   _             ____  _____

|_   _| |_|_|___ ___ ___|    \| __  |

| | |   | |   | . |_ -|  |  | __ -|

|_| |_|_|_|_|_|_  |___|____/|_____|   version: 1.6.0

|___|

ThingsDB Node 1.6.0

Maintainer: Jeroen van der Heijden <jeroen@cesbit.com>

Home-page: https://thingsdb.io

Next Steps:

Now you can start ThingsDB by typing thingsdb in your WSL terminal.
Remember to open a WSL terminal (e.g., Ubuntu) every time you want to use
ThingsDB.

20



Installation - Python
While the code examples in this book are compatible with Python versions as
old as 3.7, it is recommended to use version 3.8 or higher to ensure optimal
performance and stability. We won't cover the complete Python installation
process in this guide, as there is plenty of documentation available online. You
should also check if Python is already installed on your system as it is often
pre-installed.

After installing Python, install PIP as well. PIP is the package manager for
Python and is the simplest way to install the ThingsDB Python module. You
can install the module using the following command:

MacOS and some Linux distributions like Debian 12 have an older
version of Python pre-installed. To ensure you are working with
Python 3 and avoid compatibility issues, use pip3 and python3 for
managing your packages on these systems.

$ pip install python-thingsdb

…

Successfully installed deprecation-2.1.0 msgpack-1.0.7 python-thingsdb-

1.0.7

To verify that the installation was successful, open Python and try to import
the Client from the thingsdb module.

$ python

>>> from thingsdb.client import Client

>>>

If this command runs without errors, the installation was successful.

21



Installation - ThingsDB Prompt
Just like installing the ThingsDB Client module, you can install ThingsDB
Prompt using PIP, Python's package manager.

$ pip install thingsprompt

…

Successfully installed install-1.3.5 setproctitle-1.3.3 thingsprompt-1.0.9

Once the installation is complete, ThingsDB Prompt will be installed in your
system's PATH. You should now be able to run it directly from your terminal.
To verify the installation, run the following command:

For users encountering issues executing the things-prompt command
due to the script directory not being included in their system's PATH
environment variable, an alternative invocation method exists. Users
can bypass the PATH requirement by directly invoking the module via
python -m thingsprompt (note the lack of hyphen). This approach is
particularly advantageous in scenarios where multiple Python
environments host ThingsDB Prompt installations, and precise
environment selection is crucial.

$ things-prompt --version

1.0.9

If the version is displayed, the installation was successful.

There is also a ThingsGUI application for communicating with
ThingsDB. This application is more user-friendly and visually
appealing than the ThingsDB Prompt. However, we won't explicitly
use or document the ThingsGUI in this book's examples, simply
because we prefer to demonstrate code examples. Nonetheless, keep
in mind that this tool is available if you prefer a graphical and easy to
use interface.

22



Getting Started - Initial Setup
If you have not launched ThingsDB before, you will need to invoke the --init
argument to initiate the creation of necessary files within a designated data
directory, serving as the repository for all ThingsDB entities.

If you are using Docker Compose as described in the Docker
installation section, navigate to your docker-compose.yml directory and
run: docker compose up -d

This starts ThingsDB in the background, automatically initializing it
with the --init argument, ensuring it's ready for use.

$ thingsdb --init

_____ _   _             ____  _____

|_   _| |_|_|___ ___ ___|    \| __  |

| | |   | |   | . |_ -|  |  | __ -|

|_| |_|_|_|_|_|_  |___|____/|_____|   version: 1.6.0

|___|

This book is written based on ThingsDB version 1.6.0, and some
examples may not work with older versions. It is always best to use
the latest version of ThingsDB to ensure compatibility and avoid
potential issues.

In a separate shell, we can establish a connection to ThingsDB using the
things-prompt tool. We'll utilize this tool for some straightforward exercises in
this book. The things-prompt is one of several methods for interacting with the
interpreter.

For more intricate (and real-world) examples, we'll employ Python
code examples due to their ease of comprehension. If you wish to
follow the code examples in this book, it is advisable to install Python
and the ThingsDB client (python-thingsdb) library. However, you are
free to utilize any programming language you prefer, as the focus will
be on the ThingsDB code itself, not the specific Python code.

Okay, lets connect to the ThingsDB interpreter:

$ things-prompt -u admin -p pass -s //stuff

127.0.0.1:9200 (//stuff)>

23



To use the command we must specify a username with the -u argument.
Optionally, we can also provide a password using the -p argument (if not
given, the prompt will ask for the password). We can also provide a scope
with the -s argument and choose the //stuff scope which represents the
"stuff" collection. A collection acts like a container for your data, it is the place
where things are stored. You can create as many collections as you need.
When you start ThingsDB for the first time, a single collection "stuff" is created
which is used in this first example.

The prompt shows the IP address (or hostname) of the ThingsDB node you
are connected to. It also includes the port number and the scope where the
queries will run in.

In many cases, it is unnecessary to display connection information in
the prompt. Therefore, ThingsDB Prompt provides an optional
argument, --hide-connection-info, which suppresses the display of the
connection address and port. In this book, we'll utilize this argument
for cleaner code examples.

If you start using ThingsDB in a production environment, you should start with
more than one node, preferably three or more. ThingsDB is designed from the
start to run on multiple nodes and utilizes multiple nodes to perform, for
example, garbage collection without blocking! Garbage collection is a problem
for languages like Python, Go and JavaScript. Although it is usually fast, it
might result in shortly blocking applications, especially when the application
requires a lot of memory due to the initialization of many objects. ThingsDB
has solved this problem by ensuring garbage collection will never run on more
than one node at the same time. Queries which are received by the node who
is busy with garbage collection will forward the query to another node so your
client will not notice anything. The same technique is used for creating
backups as well.

Congratulations! You're now equipped to embark on your ThingsDB journey.
With this book as your guide, you'll gain a comprehensive understanding of
this powerful data management solution and its capabilities. So, dive in,
explore the concepts, and let ThingsDB unleash your creativity and
innovation.

24



Chapter 1 - Introduction to ThingsDB
While ThingsDB is technically a programming language, it breaks the mold by
not being primarily designed for writing traditional programs. Instead, it is
geared towards providing developers with an intuitive and flexible approach to
storing and retrieving data. This might seem more akin to SQL, another
language primarily focused on data management. However, ThingsDB's
syntax and structure closely resemble programming languages like JavaScript
and Python, making it accessible to developers familiar with those paradigms.

ThingsDB shines as the connecting force within your application, integrating
various components seamlessly. Unlike managing separate relational
databases and message brokers, ThingsDB offers a unified solution. It
provides relational data storage for structured information, a built-in pub/sub
system for real-time event handling, and scheduled task automation. This
simplifies your architecture and eliminates the need for multiple tools.

ThingsDB excels at scaling to ensure high availability, keeping your
application running smoothly even under load. However, for specialized data
like large logs or time-series data, dedicated databases might be more
suitable. In such cases, ThingsDB's strength lies in its modular connectivity.
You can connect to various external databases using pre-built or custom
modules, giving you fine-grained control over data storage and retrieval,
ensuring the right tool for the right job.

As a compelling example of its versatility, ThingsDB is employed by
InfraSonar (https://infrasonar.com), a comprehensive monitoring
solution designed to handle complex and expansive infrastructures. In
this context, ThingsDB functions as a robust back-end solution, where
critical business logic resides alongside relational data. Additionally, it
serves as a pivotal communication hub, orchestrating interactions
between microservices and handling the timely dissemination of
notifications and messages.

In contrast to languages like C/C++, Go, and Rust, which require compilation
before execution, ThingsDB utilizes an interpreter much like, for example,
Python. However, ThingsDB distinguishes itself from other interpreted
languages by maintaining state persistence, ensuring uninterrupted data
access and manipulation even after script termination.

To better grasp this concept, consider what transpires when Python is
launched.

25

https://infrasonar.com/


$ python

…

>>> value = 'Remember me'

Upon assigning the string "Remember me" to the variable value, Python retains
this value as long as the interpreter remains open. To verify this, you can
execute the following code snippet:

>>> print(value)

Remember me

However, if we terminate the interpreter and relaunch Python, our value
variable will be permanently lost:

>>> exit()

$ python

…

>>> print(value)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name value is not defined

We encounter an error message indicating that the variable value is
undefined. To retain this value, a programming language like Python must
resort to external mechanisms such as writing the value to a file and reading
from a file or utilizing a database connection.

This is where ThingsDB emerges as a solution. Similar to Python, ThingsDB
is a programming language with a rich feature set encompassing task
scheduling, type definitions, procedures, pub/sub system, and much more.
Before delving into the technical details, let's examine how the
aforementioned example would be implemented using ThingsDB.

The following code shows how to assign and store a variable:

(//stuff)> .value = 'Remember me';

"Remember me"

Notice the dot (.) in front of .value, this dot is important because it tells
ThingsDB to create a property to our collection object. The property in this
example is value and the actual value of the property is a string "Remember me".
It is important to understand that without the dot (.) in front of value, we would
have created a variable, just like we did in Python.

We also finished our statement with a semicolon (;). Although ThingsDB can
be forgiving when you forget the semicolon at the end (in fact, the code above

26



would yield the same result when omitting the semicolon) you should always
end your statements with a semicolon to prevent unwanted behavior.

In the example we also used a single space before and after the equal sign
(=). This white space is ignored by ThingsDB and could be left out, or multiple
spaces or even tabs and newlines would not make any difference. The code
below, for example, doesn't look very appealing, but is just as valid as the
example above.

(//stuff)> .  value

=

'Remember me'

;

"Remember me"

If you need to insert newlines within your command, you can use the
CTRL+n keyboard shortcut.

Now that we have assigned the property value to the root of the collection,
exit the prompt by pressing CTRL+d.

Stop ThingsDB (Choose the method that matches your setup):

Without Docker: Press CTRL+c in the terminal where ThingsDB is
running.
With Docker Compose: Navigate to the directory containing your
docker-compose.yml file and run docker compose stop.

Now start ThingsDB again and also start the prompt again.

You do not need the --init argument anymore although this argument
will be ignored when ThingsDB is already initialized. If you really want
to re-initialize ThingsDB then you could also add the --force
argument. This would remove all ThingsDB data and start a clean
node!

(//stuff)> .value;

"Remember me"

As you can see, ThingsDB still knows about the property value. You might also
notice that however this example is very simple, the syntax is more
comparable with programming languages than it is with something like SQL.

You might also wonder how the client is able to perform the query. The
protocol for communication with ThingsDB is done with MessagePack.
ThingsDB follows the same rules as MessagePack. Strings are assumed to

27



be UTF8. This, however, is not guaranteed by ThingsDB but depends on if the
MessagePack protocol is correctly followed. Usually, when working with a
trusted client, this is the case. If you are not sure about this, ThingsDB has a
function is_utf8() to test if a string really is UTF8. It also can define this on a
type but we shall explore types later. Besides MessagePack, ThingsDB has
support for JSON but this is strictly used for the HTTP API.

In the code sample below we verify that .value contains a string with valid
UTF-8 encoding:

(//stuff)> is_utf8(.value);

true

If we want to know which type .value was, we could use the type() function.
This function always returns a string with type information.

(//stuff)> type(.value);

"str"

In ThingsDB it is allowed to use statements as arguments. The code below
shows that the is_utf8() function returns with a boolean value:

(//stuff)> type(is_utf8(.value));

"bool"

Where is the property "value" stored?

1.1 Things and Why ThingsDB
As we mentioned earlier, the value has been assigned to the root object. We
refer to these objects as "things", which explains the name ThingsDB. Every
collection has a root which is a regular thing. It is not possible to remove the
root, unless you choose to remove the complete collection. Every stored thing
also receives a unique ID from ThingsDB. To see which ID our collection has,
you can use the id() method.

(//stuff)> .id();

1

The initial stuff collection most likely has ID 1, but it might be different on your
computer depending on the version of ThingsDB used when the collection
was created. We also start the method id() with a dot (.) in front of it. That is
because id() is a method of a thing object.

28



1.2 Code Blocks
ThingsDB enables the placement of code within code blocks, which are
enclosed by curly braces {} and must contain at least one statement. It is
crucial to note that code blocks themselves are interpreted as statements,
and, consequently, must be terminated with a semicolon.

(//stuff)>

{

.value = 'Remember me';

}; // this semicolon ends the "block" statement

"Remember me"

Code blocks enable the grouping of statements, which can be particularly
beneficial when employed in conjunction with conditional statements (if-
statements), iteration constructs (for-loops), or closures, all of which are
detailed in subsequent chapters.

1.3 Variables and Properties
Just as we did in Python, we can also assign a value to a variable.

(//stuff)> value = "I'm a variable";

"I'm a variable"

Without the dot, this is just a variable. Variables only exist within a single
query. Therefore we cannot ask for value in the next query. If we did,
ThingsDB would return with a LookupError.

(//stuff)> value;

LookupError: variable `value` is undefined

In this example we used value as the name of our variable. Note that this can
be named as you wish, for example, x, y, Foo, myValue and my_value are all
good examples of variable names. Variables, like almost everything in
ThingsDB, are case sensitive. This means that VALUE is not the same as value
and they both can exist as different variables. A variable must start with a
charter of a-z (or capital A-Z) or an underscore (_) and may be followed by the
same or a number. The variable is not allowed to start with a number.

Here are some examples:

29



dog = nil; // valid

Dog = nil; // valid

_dog = nil; // valid

cat-or-dog = nil; // invalid – no hyphen (-) allowed in a variable name

catOrDog = nil; // valid

cat_or_dog = nil; // valid

2dogs = nil; // invalid – a variable name must not start with a number

The code above also includes comments, which are denoted by the // prefix.
Everything behind the // on a line will be disregarded by ThingsDB. An
alternative comment syntax using /* and */ allows for comments spanning
multiple lines. However, in this book, we'll primarily utilize the // syntax, as it is
less prone to errors and avoids the risk of forgetting to close the comment
section.

Properties, on the other hand, have different naming rules. Almost anything is
possible except for a few reserved single character names. For example, we
can't use # as this is a reserved property name and is being used by
ThingsDB to expose the ID. Keep in mind that it is possible to create a
property which starts with a reserved character. For example, the property
"# 007" is valid and can be used but if we wanted to assign this property, we
can't just write it like before as this syntax is invalid.

(//stuff)> .# 007 = "James Bond";

SyntaxError: error at line 1, position 1, unexpected character `#`

Instead, we can use the method set(key, value) which is available on every
object of type thing.

(//stuff)> .set("# 007", "James Bond");

"James Bond"

If we need to read the property, we require the get(key) method.

(//stuff)> .get("# 007");

"James Bond"

The get() method is also useful for when you are not sure a property exists.
By default, the return value is nil for when a property is not found.

(//stuff)> .get("I do not exist");

null

Did you notice I mentioned nil? Well, the output shows null, so let's clarify the
situation. The reason for seeing null is that our prompt is written in Python,
where "nil" is called "None". However, when the output is converted to JSON

30



format for display in the console, JSON uses null to represent the None type.
Be mindful of this when translating between different programming languages.

If we wanted an alternative value we could provide the get() method with an
alternative value.

(//stuff)> .get("I do not exist", "but I do");

"but I do"

1.4 Lazy Arguments Evaluation
Arguments to build-in methods and functions in ThingsDB are lazy evaluated.
Lazy arguments evaluation means that the code which is used as the
argument is not executed in case the argument is not being used. In case of
the get() method this means that we are allowed to raise an error as the
second argument which will only be executed in case the property is not
found.

(//stuff)> .get("foo", raise(lookup_err()));

LookupError: requested resource not found

The error is raised because the property "foo" does not exist. If we would use
the same code with a property which does exist, no exception would be
raised.

(//stuff)> .get("# 007", raise(lookup_err()));

"James Bond"

We don't go into detail for the code to raise an error. For now it is enough to
see lazy evaluation of method and function arguments at work.

1.5 Query Response
Up to this point, the code snippets presented for each query involved single
statements, and the response reflected the output of that statement. However,
query code in ThingsDB can encompass as many statements as needed. The
query response always encapsulates the outcome of the final executed
statement. Typically, this refers to the last statement in the provided code,
unless an exception is triggered or the return keyword is explicitly utilized.

Consider these examples:

31



(//stuff)> // press CTRL+n for a new line

1 / 0;

"Hello!";

ZeroDivisionError: division or modulo by zero

In this instance, the division by zero raises an exception, and the subsequent
statement, "Hello!", is not executed. The response, therefore, reflects the
error message generated by the exception.

Technically, an error response in ThingsDB is not merely a message
but a distinct protocol type. This distinction enables clients to discern
error responses and handle them appropriately, separate from valid
data responses.

On the other hand, if the return keyword is explicitly used to terminate the
query, the response will be the value specified by the return statement:

(//stuff)>

return 123;

"Hi!";

123

Here, the return statement halts the execution of the query and delivers the
value 123 as the response, effectively skipping the subsequent statement,
"Hi!".

In summary, the response of a ThingsDB query mirrors the outcome of the
final executed statement, unless an exception arises or the return keyword is
explicitly employed. This flexibility allows for more complex and versatile
query operations.

1.6 Scopes
Before we dive deeper into the ThingsDB language, we must first explain
more about scopes. The example above uses the "stuff" collection, which is
automatically created on a new ThingsDB initialization. As mentioned before,
a collection is the place where data is stored. If you like to compare with SQL
then you can think of a collection like a database. In SQL, you may have
multiple databases running on a single SQL instance and in ThingsDB you
can have multiple collections.

ThingsDB creates a unique scope for each collection. The full scope name for
the "stuff" collection is /collection/stuff. You can shorten the prefix
"collection" or even omit it altogether, so /c/stuff and //stuff are considered
equivalent scopes. Additionally, you can use the "@" symbol to represent a

32



scope. This syntax replaces the first "/" with "@" and the second with a
semicolon, resulting in @collection:stuff or @:stuff for short.

Management of collections happens within the /thingsdb scope. ThingsDB
allows you to abbreviate this scope name as much as you like, so you might
commonly see the shortened version /t being used. Similarly to the collection
scope example, you can also use the "@" symbol. So, /thingsdb, @thingsdb,
/t, and @t all refer to the same scope.

In the early days of ThingsDB, only full scope names using the @
syntax were permitted. The @ symbol was chosen because it is an
unused character in the ThingsDB language, leaving open the
possibility of implementing it as a native scope definition within the
language. With the introduction of the HTTP API, however, the slash
(/) syntax became more prevalent, as it aligns more closely with
standard URL conventions. Recognizing the inconvenience of typing
out lengthy scope names repeatedly, the developers decided to allow
abbreviated scope names to enhance the user experience.

For switching within the prompt, we must use the @ syntax since otherwise
the prompt does not understand that we want to switch from scope. This is
because the "@" character is not part of the ThingsDB language and thus can
be recognized by the prompt as a different action.

In addition to collection scopes and the /thingsdb scope, ThingsDB
provides a third type of scope specifically designed for retrieving node
information. These node scopes can also be employed to execute
certain node-specific tasks, such as creating backups or dynamically
adjusting the logging level for a node.

Let's switch the prompt to the @thingsdb scope:

(//stuff)> @t

(@t)>

We see that we switched to another scope. The @thingsdb scope is not able to
store regular data as it contains no root object (thing) to attach properties to.

(@t)> .cat = 'Leo';

LookupError: the `root` of the `@thingsdb` scope is inaccessible; you might

want to query a `@collection` scope?

Instead, we use the @thingsdb scope to manage users, access rights,
collections, modules, nodes and more.

33



For now we do not go into details but we create a new empty collection using
the new_collection() function which is available in the @thingsdb scope.

(@t)> new_collection('chapter2');

"chapter2"

The return value is the name for the newly created collection. While internally
ThingsDB assigns a unique ID to the collection for communication purposes, it
is the name that you will use for interactions with the collection. In the next
chapter we shall use the collection we have just created.

34



1.7 Quiz - Challenge Your Understanding
1. How is ThingsDB different from other databases and programming

languages?

2. What is the purpose of the --init argument when starting a ThingsDB
node?

3. The provided code contains a mistake. Can you identify and correct it?
{a = 1;} b = 2;

4. Suppose we have the following code:
a = 1; .b = 2;

Which sentence is correct?
a. Both a and b are variable
b. Both a and b are properties of the collection root
c. a is a property of the collection root and b is a variable
d. a is a variable and b is a property of the collection root

5. Which of the following are valid variable names?
a. 4you

b. _Color

c. my-hobby

d. P

e. Mode_1

6. What is the value of property x after executing the following code?
.x = 1; .get("x", .x = 2);

7. What comprises the response generated by a query?

8. Is it possible to create a property user with the value "Alice" while using
the @thingsdb scope?

9. Which scope can be used to execute the following code? (multiple
answers are possible)
new_collection("book");

a. /t

b. @:t

c. //thingsdb

d. @things

e. /node

35



1.7.1 Quiz - Answers

1. ThingsDB is different in that it uses a distributed interpreter which
preserves its state making it a programming language with database
capabilities.

2. The --init argument is essential when initiating ThingsDB for the first
time. It establishes the data path and creates a foundational collection.
Subsequent invocations of ThingsDB with the --init argument will be
disregarded unless accompanied by the --force argument to override
existing configurations.

3. While the code block is not strictly necessary, it is missing a crucial
semicolon to terminate the code block statement. As a result, running
this code would generate an error message:
..unexpected character `b`, expecting: ; or end_of_statement. To rectify
the issue, either add a semicolon after the code block or remove the
code block entirely.

4. Answer "d" is correct. In this code snippet, a is a variable, and .b is a
property of the collection root. The equivalent code would be root().b;,
which explicitly references the root collection and then accesses its b
property.

5. The variable names "b", "d" and "e" are valid. A variable name cannot
start with a number making 4you invalid. A variable name may only
consist of the letters a-z, A-Z, underscores (_) and digits 0-9 (except for
the first character which is not allowed to be a digit). Therefore, my-hobby
is invalid as it contains the "-" character.

6. The value of property x is 1. The get() method effectively retrieves the
value of property x, which is 1. It optionally takes a second argument to
provide a fallback value in case the property does not exist. In this
instance, since the property x is found, the second argument is never
evaluated, demonstrating the concept of "lazy evaluation" in action.

7. The response of a query encapsulates the outcome of the final
statement executed within the query. Typically, this refers to the last
statement within the provided code, unless an exception arises or the
return keyword is explicitly employed.

8. No. The @thingsdb scope is specifically designed for managing your
ThingsDB cluster, not for storing data. It allows you to handle
administrative tasks such as user access control, collection creation,
node management, and more. While you can create procedures within
the @thingsdb scope, it does not provide a root thing to store properties.
Therefore, you must use a collection scope to store data.

36



9. Both "a" and "d" are correct. New collections can be created in the
@thingsdb scope and both /t and @thing are valid abbreviations. Both "b"
and "c" are collection scopes and "e" is an example of a node scope.

37



Chapter 2 - Integers, Floating Points,
Booleans, Strings and Nil
For this chapter we switch to the newly created collection (see the previous
chapter on how to create the collection).

(@t)> @ //chapter2

(//chapter2)>

The @ command tells the prompt you want to switch to another
scope. In this example we used the forward-slash notation to switch to
the "chapter2" collection.

2.1 Integers
In ThingsDB integers, strings, boolean and floating point values are all
immutable. That is, you cannot change an immutable value once it is created.
An integer is a number without a fractional component. Examples are 1, 2, 415
but also 0 and negative integers like -15. As we explained, integer values are
immutable which means that we cannot change the value once assigned.

For example, if we assign the integer to the variable x, we cannot change the
value.

(//chapter2)> x = 42; // x will be immutable

42

We cannot change the value as x is immutable, but we can assign a new
value to x.

(//chapter2)> // press CTRL+n for a new line

x = 2;

x = x + 1; // overwrite x with a new integer value

3

The return value is indeed the last assignment.

Aside from the basic assignment operator (=), ThingsDB supports other
assignment operations that allow you to modify values in more complex ways.
For instance, you can use the addition assignment operator (+=) to add a
value to another and assign the result to a variable. For example:

38



(//chapter2)> // press CTRL+n for a new line

x = 2;

x += 1; // read as: x = x + 1

3

Table 2.1 - Assignment operators

Operator Description

= Assignment operator

*= Multiplication assignment

/= Float division assignment

%= Modulo assignment

+= Addition assignment

-= Subtraction assignment

&= Bitwise AND assignment

^= Bitwise XOR assignment

|= Bitwise OR assignment

The range of integers is limited to a minimum and maximum value. You can
ask this minimum and maximum value with the keywords INT_MIN and INT_MAX.

(//chapter2)> INT_MIN;

-9223372036854775808

(//chapter2)> INT_MAX;

9223372036854775807

When you try to create an integer value outside this range, an Overflow error
is raised as ThingsDB cannot store this value.

(//chapter2)> INT_MAX + 1; // this will error

OverflowError: integer overflow

In addition to the familiar base-10 notation, integers can also be represented
using hexadecimal (hex), octal (oct), and binary notation. Each of these
notations has its own unique set of symbols and prefixes that distinguish it
from the others.

39



Hexadecimal notation (hex) uses the digits 0-9 and the letters A-F to
represent values from 0 to 15. Hex numbers are prefixed with the identifier
"0x" to indicate their hexadecimal nature. For instance, the number 0xFF
represents the decimal value 255.

Octal notation (oct) employs the digits 0-7 to represent values from 0 to 7.
Octal numbers are prefixed with the identifier "0o" to distinguish them. For
example, the number 0o77 stands for the decimal value 63.

Binary notation (bin) utilizes only the digits 0 and 1 to represent values from 0
to 1. Binary numbers are prefixed with the identifier "0b". For example, the
number 0b1010 equals the decimal value 10.

Here are a few examples:

0xff; // hex notation (255)

0x1F; // hex notation (31) - capital letters are allowed

0X10; // !! error !! - the "x" must be lowercase

123; // decimal notation

0o77; // octal notation (63) - the "o" must be lowercase

0b1010; // binary notation (10) - the "b" must be lowercase

Assignments work from right to left. The example below first assigns 30 to
apples, then apples is assigned to grapes and finally grapes is assigned to
lemons.

(//chapter2)> lemons = grapes = apples = 30;

30

2.2 Floating Points
Floating-point numbers are used to represent numbers with decimal parts,
such as 0.5 and 3.14159. ThingsDB supports two notations for representing
floating-point numbers: standard decimal point notation and scientific notation
(E notation).

Standard decimal point notation is commonly used for representing everyday
numbers, such as 1.0, 56.0, and 0.5. The E notation is more compact and is
typically used for representing very large or very small numbers. For example,
the number 1.5e+3, written in E notation, represents the same value as
1.5 * 1000. Similarly, 1.2e-4, written in E notation, represents the same value
as 1.2 * 0.0001.

ThingsDB adheres to strict rules for writing E notation. The "e" must always be
lowercase, and the sign (+ or -) is required to indicate whether to multiply by
10 to the positive or negative power.

40



Due to the limited precision of 64-bit floating-point numbers in ThingsDB,
some decimal values may not be represented accurately. For instance, the
result of dividing 10.0 by 3.0 is displayed as 3.3333333333333335, even though
the actual decimal representation extends infinitely. This is because the 64-bit
format can only store a finite number of decimal digits.

(//chapter2)> 10.0 / 3.0; // the single / means division

3.3333333333333335

ThingsDB follows the standard floating-point behavior when performing
arithmetic operations. If either operand is a float, the result will also be a float.
However, if both operands are integers, the result will be an integer and will
be rounded towards the nearest integer towards zero. For example, 10 / 3 will
be 3, and 10 / -3 will be -3. This is because integer division in ThingsDB
truncates the fractional part, discarding any decimal places.

The decision of whether to use integer or float values depends on the
specific context and the desired precision. Integers have a slight
advantage in terms of storage size, as they can be compressed using
the MessagePack protocol to occupy only 1 byte up to max 9 bytes
whereas floating point values always are serialized using 9 bytes.

Two special floating-point values exist in ThingsDB: inf (infinity) and nan (NaN,
not a number). Infinity represents an infinitely large number, while NaN
represents a value that cannot be represented accurately. In other
programming languages, nan may be the result of operations like 0/0, but in
ThingsDB, such operations will throw a division by zero error.

In ThingsDB, you will encounter nan only when a value is explicitly set to nan or
when incoming arguments contain nan. One important distinction to remember
is that comparing nan values to other values will always yield false results.
Instead, use the is_nan() function to explicitly check whether a value is nan.

(//chapter2)> nan == nan; // this is false!!

false

(//chapter2)> is_nan(nan); // use is_nan() to test for NaN

true

2.3 Numeric Tools
In addition to the arithmetic operators, ThingsDB provides a set of handy
mathematical functions for performing calculations on numbers. These
functions typically accept either a float or integer as input and return the
calculated result. As an example, the sqrt() function calculates the square
root of a given number. Here are a few examples:

41



(//chapter2)> sqrt(9); // Square root of 9

3.0

(//chapter2)> pow(5, 3); // 5 raised to the power of 3

125.0

(//chapter2)> round(loge(5.12), 3); // Combine round() and loge()

1.633

(//chapter2)> ceil(6.1034); // Ceil of a given number

7

For a comprehensive list of all available mathematical functions, refer to the
official ThingsDB documentation:
https://docs.thingsdb.io/v1/collection-api/math/

2.4 Boolean
The bool type, named after George Boole, is used to represent truth values.
ThingsDB automatically converts bool values to integers when needed. This
conversion follows the standard convention of representing true as 1 and
false as 0. For instance, adding two true values would result in 2. Similarly,
subtracting two false values would result in 0. Consider this example:

(//chapter2)> true + true;

2

In this example, the expression true + true is evaluated to 2, even though
both operands are bool values.

In ThingsDB, you can also convert other data types to the bool type. For
example, an integer value of 0 converts to false, and any other integer value
converts to true. This applies to other data types as well, such as floats and
strings. An empty string converts to false, while a string with any content,
even whitespace, converts to true.

Here is an example demonstrating this:

(//chapter2)> bool(0.0); // float 0.0 (false)

false

(//chapter2)> bool(""); // empty string (false)

false

(//chapter2)> bool(-4.13); // non-zero float (true)

true

(//chapter2)> bool("Hello"); // non-empty string (true)

true

The conversion rules for other data types are described later in this book, but
the important thing to remember is that any type can be converted to the bool
type.

42

https://docs.thingsdb.io/v1/collection-api/math/


Occasionally, you might encounter code that employs two exclamation marks
(!!) instead of the bool() function. The single exclamation mark serves as the
"not" operator, which first converts the value following it to a boolean and then
flips that value. When a second exclamation mark is used, the inverted value
is inverted once more. As you can see, this ultimately yields the same result
as using the bool() function.

(//chapter2)> !!"Cool"; // non-empty string (true)

true

This usage serves as a concise alternative to explicitly calling the bool()
function.

2.5 Strings
Strings are used to store textual data and are typically encoded using UTF-8.
Whether the encoding is indeed UTF-8 depends on whether the
MessagePack protocol is followed during communication with ThingsDB.
Strings are sequences of characters and can be indexed, meaning they have
a defined length.

(//chapter2)> .b = "bike";

"bike"

(//chapter2)> .b.len(); // len() is a method of type "str"

4

As demonstrated, strings are objects with associated methods. The len()
method is an example that can be used to determine the length of a string.

(//chapter2)> .b[0]; // the first byte is at index 0

"b"

Indexing for strings begins at position 0. Negative indexing is also supported.

(//chapter2)> .b[-1]; // last byte, read as: .b[.b.len()-1]

"e"

(//chapter2)> .b[.b.len() - 1]; // last byte, the hard way

"e"

Notice that any expression can be used for indexing strings. ThingsDB
supports this level of flexibility.

Besides indexing, strings (and other sequences) support slicing, which allows
you to extract a specific segment from the sequence. Slicing involves
specifying a starting position (inclusive), an ending position (exclusive), and
an optional step size.

43



(//chapter2)> .b[1:3]; // slice from position 1 up to,

// but not including, position 3

"ik"

Slicing operations create a new string, leaving the original string unchanged.
This is because strings in ThingsDB are immutable, meaning they cannot be
directly modified.

The general format for a slice is [start:end:step], where start defaults to 0,
end defaults to the length of the string, and step defaults to 1.

(//chapter2)> .b[1:]; // equivalent to .b[1:.b.len()]

"ike"

(//chapter2)> .b[:-2]; // equivalent to .b[0:.b.len()-2]

"bi"

(//chapter2)> .b[:]; // equivalent to .b[0:.b.len()]

"bike"

The step parameter enables you to select specific elements of the sequence
by skipping over certain values. Negative step values can also be used to
begin from the end of the sequence.

(//chapter2)> .b[::2]; // slice with an even step size,

// extracting only even-indexed bytes

"bk"

(//chapter2)> .b[::-1]; // slice in reverse order

"ekib"

In prior discussions, we have often used the term "bytes" instead of
"characters" when referring to strings. This is because the length of a string in
ThingsDB is measured in bytes, not characters. This can be important to keep
in mind, especially when dealing with UTF-8 encoded strings, which can use
multiple bytes to represent a single character.

(//chapter2)> .u = "Hi! 😁"; // UTF-8 string with smiley

"Hi! \ud83d\ude01"

(//chapter2)> .u.len(); // Length of the string in bytes

8

(//chapter2)> is_utf8(.u); // Check if UTF-8 encoded

true

In this example, the string "Hi! 😁" has a length of 8 bytes, even though it
contains only 5 characters. This is because the Unicode character for the
smiley face, 😁, requires 4 bytes to represent. When working with strings in
ThingsDB, it is crucial to remember that strings are internally treated as
sequences of bytes, not characters.

44



To further illustrate the distinction between bytes and characters, consider this
example:

(//chapter2)> .u[-3:]; // don't try this

(!! your client will likely crash or at least display an unpacking error)

This code attempts to index the string .u starting from the third-last character.
However, since UTF-8 encoded characters can span multiple bytes,
attempting to index directly by character position can lead to unexpected
behavior, as demonstrated by the potential client error.

On the other hand, ThingsDB internally handles strings as sequences of
bytes. Therefore, while this specific indexing operation might cause issues on
the client-side, ThingsDB itself can still process the string correctly. This is
evident from the following command:

(//chapter2)> is_utf8(.u[-3:]); // No problem for ThingsDB

false

This command confirms that ThingsDB can still determine that the extracted
substring is not valid UTF-8 even though it is accessed using an invalid
character index. This demonstrates that ThingsDB handles strings
consistently as sequences of bytes, regardless of the specific indexing
operations performed.

2.5.1 String Methods

We have already explored the len() method for determining the length of a
string. However, ThingsDB offers a wealth of additional methods for string
manipulation like, for example, the upper() method.

(//chapter2)> .b.upper(); // Produces a new string in uppercase

"BIKE"

The upper() method generates a new string with all characters converted to
uppercase and exemplifies the various methods available for the string type.
Other methods, such as starts_with(), accept arguments and can be used to
determine if a given string begins with another string.

(//chapter2)> "this is a test".starts_with("this is");

true

(//chapter2)> "another test".starts_with("Ano");

false

To explore a comprehensive list of all the methods available for the string
type, including upper() and starts_with(), refer to the official ThingsDB

45



documentation here: https://docs.thingsdb.io/v1/data-types/str/

2.5.2 Escaping and Multi-line Strings

Until now, we have primarily employed double quotes to delimit strings.
However, what if we want to include double quotes within the string itself? In
this situation, we have two options. The simplest approach is to enclose the
string in single quotes, which ThingsDB also supports:

(//chapter2)> '"This is an example", she said';

"\"This is an example\", she said"

Notice that the response is rendered in JSON format. In JSON format,
we observe that double quotes are escaped with a backslash (\).

Alternatively, we can escape double quotes by placing another double quote
directly before them:

(//chapter2)> """This is as well"", he said";

"\"This is as well\", he said"

This escaping technique also applies to single quotes within single-quoted
strings.

In ThingsDB, all strings are inherently multiline. Simply utilize newline
characters to introduce line breaks within a string.

(//chapter2)> "All

strings in ThingsDB

are multiline!!";

"All\nstrings in ThingsDB\nare multiline!!"

As before, the response is presented as JSON format, and therefore the
newline characters are displayed as \n.

2.5.3 Concatenation and t-strings

String concatenation can be accomplished using the + operator.

(//chapter2)> "My " + .b + " is black";

"My bike is black"

Take note that this does not work with other data types unless we explicitly
convert them to strings:

46

https://docs.thingsdb.io/v1/data-types/str/


(//chapter2)> // CTRL-n for a new line

.n = 3; // Assign integer 3 to property "n"

"I've " + .n + " apples";

TypeError: `+` not supported between `str` and `int`

Remember that even though the code above resulted in an exception,
the property "n" is still preserved..

To rectify the example above, we can utilize the str() method to convert the
integer to a string:

(//chapter2)> "I've " + str(.n) + " apples";

"I've 3 apples"

In practice, it is advisable to avoid string concatenation. Instead, opting for t-
strings is a superior choice. A t-string starts and ends with a backtick (`) and
enables us to embed variables or even entire expressions within curly braces.

(//chapter2)> `I've {.n} apples`;

"I've 3 apples"

This approach does not only enhance readability but also eliminates the risk
of forgetting to convert to a string, as the conversion is done automatically
when using the t-string syntax.

If you need to include curly braces or backticks within a t-string, you can
follow the same escaping method used for single and double-quoted strings.
To escape a curly brace, use two consecutive curly braces, and for a backtick,
use another backtick.

(//chapter2)> `Sentence with ``Backticks`` and {{Curlies}}.`;

"Sentence with `Backticks` and {Curlies}."

This approach ensures that the braces and backticks are interpreted as part
of the string and not as special characters.

2.6 Nil
We've encountered nil before as the return value of functions, methods or
statements that do not produce any meaningful output. This concept extends
to queries where we don't expect a substantial response.

Consider the following:

47



(//chapter2)> .quote = "'So many books, so little time.' -- Frank Zappa";

"'So many books, so little time.' -- Frank Zappa"

This query assigns a quote but also sends the quote back to the client,
consuming unnecessary network bandwidth. Since we have already stored
the quote, we do not need it echoed back in the response. In such cases, it is
considered a best practice to terminate the code with the nil type to prevent
this unnecessary response:

(//chapter2)> .quote = "'So many books, so little time.' -- Frank Zappa";

nil;

null

By appending nil, we avoid sending the quote back to the client, minimizing
network overhead. Explicitly ending a query with nil also enhances the code's
readability and intent. It clearly indicates that the query does not expect a
response, making the code more self-explanatory and easier to follow.

2.6.1 Avoiding Ambiguity with Nil as a Placeholder

The nil data type often serves as a placeholder for empty values. While this
can be convenient, it is crucial to avoid relying solely on the fact that nil
evaluates to false. This is because other data types, such as an integer value
of 0 or an empty string, also evaluate to false. To accurately identify nil, use
the dedicated is_nil() function. This ensures that you are explicitly checking
for the absence of a value rather than relying on potentially misleading
behavior.

2.7 Errors
Before delving into the quiz for this chapter, let's explore the error data type.
Throughout this chapter, we have encountered a few errors in our queries.
While errors themselves are normal types in ThingsDB, raising an error
interrupts the query execution and triggers the dedicated error handling
protocol.

Consider the zero_div_err, which represents the error raised when attempting
to divide by zero. We can create an instance of this error type and access its
properties:

(//chapter2)> zero_div_err().msg();

"division or modulo by zero"

(//chapter2)> zero_div_err().code();

-58

48



In this example, we only returned the error information without raising it.
However, we can explicitly raise an error using the raise() function:

(//chapter2)> raise(zero_div_err());

ZeroDivisionError: division or modulo by zero

The client, in this case the ThingsDB Prompt, recognizes the error and returns
a corresponding exception: ZeroDivisionError.

The default message can be overwritten. Here is an example of the
zero_div_err error with a customized message:

(//chapter2)> zero_div_err("division by zero is not allowed");

"division by zero is not allowed"

As you can see, the default message is now replaced with your custom
message. Importantly, when an error is returned (without being raised), it is
sent to the client as a string containing the message (equal to explicitly calling
the msg() method).

ThingsDB also allows you to define custom error codes. These codes must
fall within a specific range: -127 to -50.

To avoid conflicts with existing ThingsDB error codes (like zero_div_err
which ranges from -99 to -50), it's recommended to keep your custom
error codes within the range of -127 to -100. For a comprehensive list
of error codes, refer to the official documentation:
https://docs.thingsdb.io/v1/errors/

Here is an example of raising a custom error with a code:

(//chapter2)> raise(err(-100, "My Custom Error"));

CustomError: My Custom Error

It is worth noting that -100 is the default code for custom errors. You can
achieve the same result by raising the message directly:

(//chapter2)> raise("My Custom Error");

CustomError: My Custom Error

2.7.1 Capture Errors

Unlike traditional try-catch blocks found in many languages, ThingsDB utilizes
a try() function for error handling. This function requires at least one
argument, which is the code you want to execute. If an error arises within the

49

https://docs.thingsdb.io/v1/errors/


code, try() returns with the error, preventing disruption of the entire query
execution.

Let's see this in action:

(//chapter2)> a = 7.0; b = 0.0;

x = try(a / b); // try dividing a with b

`{a} / {b} = {is_err(x) ? 'NaN' : x}`;

"7 / 0 = NaN"

Dividing by zero triggers an error, which is captured by the try() function. Use
the is_err() function to check if the returned value from try() contains an
error.

While try() captures all errors by default, you can refine its behavior to handle
only specific errors. To achieve this, provide the desired error types as
additional arguments to the try() function.

(//chapter2)> try(1 / 0, zero_div_err()); "OK";

"OK"

This code only captures the zero_div_err error, any other errors would still be
raised.

This chapter covered some fundamental types of ThingsDB, including the
concept of error handling. Test your understanding with the quiz and join us in
the next chapter where we delve into lists and tuples.

50



2.8 Quiz - Challenge Your Understanding
1. What data type will be the result of adding an integer to a float?

2. If you have a value of 0.0, what will be the result of putting two
exclamation marks in front of it?

3. Can you guess the result of evaluating the following expression?
sqrt(25);

4. Is it possible to change the string "alarm" to "ALARM" by converting all
characters to uppercase?

5. Choose the correct answer:
a. Strings in ThingsDB are always encoded in UTF-8
b. Strings in ThingsDB must be written on a single line
c. Strings in ThingsDB are internally represented as sequences of

bytes
d. Strings in ThingsDB must at least contain one character

6. What string is created by the following code:
"slicing"[2:5]

7. Can you guess which string is produced by the following code without
executing it?
"blue blue grass, blue blue sky".replace("blue", "green", 2);

(Hint: consult the online documentation for the replace method)

8. When and why is it considered a good practice to end a query with nil?

9. What happens when executing the following statement in ThingsDB?
try({2 / 0; .A = true;}); .B = true;

a. Neither .A nor .B will be set because the division by zero raises an
error

b. Only .A will be set because the assignment happens within the
try() block

c. Only .B will be set because try() catches the error and execution
continues

d. Both .A and .B will be set to true

51



2.8.1 Quiz - Answers

1. The result will be a float. When one operand is a float, the other operand
is internally promoted to a float and the result will also be a float.

2. The exclamation mark before the value 0.0 converts the value to a
boolean (false) and then flips the value (true). The second exclamation
mark inverts the result again, so the final result is false.

3. The result of evaluating the expression sqrt(25); is 5.0. While you might
initially think of the answer as simply 5, remember that the sqrt()
function always returns a float, even when the input is an integer.

4. No, strings in ThingsDB are immutable, meaning they cannot be
changed after they are created. You can create a new string with
uppercase characters by using the upper() method.

5. The correct answer is "c", strings are internally represented as
sequences of bytes. A string should be encoded in UTF-8 but this is not
guaranteed. Strings can be defined across multiple lines and an empty
string evaluates to false when converted to bool, but is still a valid string.

6. The string "ici". Indexing starts at zero, so index 2 corresponds to the
third character. The slicing operation results in a substring consisting of
the characters from index 2 (inclusive) to index 5 (exclusive).

7. The resulting string is "green green grass, blue blue sky". The replace()
method can be employed to replace a specified sequence of characters
within a string with another string. Optionally, you can specify the
number of instances to be replaced. Had the optional argument not been
set to 2, the result would have been
"green green grass, green green sky".

(The replace() method offers more capabilities than described here.
Consult the documentation for a comprehensive overview of its power:
https://docs.thingsdb.io/v1/data-types/str/replace/).

8. When you execute a query that does not produce a meaningful
response. It prevents unnecessary transmission of data back to the
client and improves clarity and readability as it clearly indicates that the
query does not expect a response.

9. The answer is "c". Only .B is set to true. The division by zero in try()
halts its execution, preventing the assignment to .A. Execution continues
outside try(), allowing the assignment to .B.

52

https://docs.thingsdb.io/v1/data-types/str/replace/


Chapter 3 - Lists and Tuples
Before we proceed, let's create a new collection named "chapter3" and switch
to its scope. If you need a refresher on creating new collections, refer back to
section 1.6 Scopes.

This chapter delves into the realm of lists and tuples, exploring their nature as
array-like data structures with a crucial distinction: lists are mutable, allowing
their contents to be modified, while tuples are immutable, preserving their
values once created. Additionally, we'll uncover the concept of closures,
unnamed functions that capture their surrounding scope, and examine their
role when used as arguments.

3.1 Lists
Lists are positionally ordered collections of arbitrarily typed objects, and they
have no fixed size. They are also mutable. Unlike strings, lists can be modified
in-place by assignment to offsets and by a variety of list method calls.

(//chapter3)> .L = [true, "Eggs", 0.1];

[

true,

"Eggs",

0.1

]

Similar to strings, you can get the length of a list and use indexing and slicing:

(//chapter3)> .L.len(); // Length of the list

3

(//chapter3)> .L[1]; // Access the second item at index 1

"Eggs"

(//chapter3)> .L[-2:]; // Get the last 2 items

[

"Eggs",

0.1

]

Since lists are mutable, you can modify their contents directly:

53



(//chapter3)> .L[0] = false; // Set the first item to false

false

(//chapter3)> .L[1:1] = ["Ham", "&"]; // Insert "Ham" and "&" at index 1

null

(//chapter3)> .L;

[

false,

"Ham",

"&",

"Eggs",

0.1

]

More common is to use one of the list methods to update the list.

(//chapter3)> .L.shift(); // Remove the first item

false

(//chapter3)> .L.pop(); // Remove the last item

0.1

(//chapter3)> .L.unshift("The", "best"); // Insert "The" and "Best" at the

// beginning

5

(//chapter3)> .L.push("recipes"); // Append "recipes" to the end

6

(//chapter3)> .L.extend(["big", "world"]); // Append another list

8

(//chapter3)> .L.splice(6, 1, "in", "the"); // Remove 1 item at index 6 and

// replace it with "in" & "the"

[

"big"

]

The return value of each method varies depending on its functionality. In
general, update methods return the removed values or the new list length if
they only add items. Among the methods discussed, splice() stands out for its
versatility. It can remove multiple items, insert new ones, and even return the
removed items in a separate list.

If you have followed the examples above in the correct order, your list should
now contain only strings. You can concatenate these strings into a single
string using the join() method:

(//chapter3)> .L.join(" "); // Join using a space

"The best Ham & Eggs recipes in the world"

3.1.1 Bounds Checking

While lists in ThingsDB do not have a fixed size, accessing an index beyond
the list's bounds will still trigger a LookupError.

54



(//chapter3)> .L[99];

LookupError: index out of range

(//chapter3)> .L[99] = 1;

LookupError: index out of range

Instead of silently expanding the list, ThingsDB raises a lookup_err. To extend
a list, utilize methods like push or slice assignments, which were previously
demonstrated.

3.1.2 Reference and Maintained Lists

While ThingsDB adheres to conventional list behavior in most cases, it
employs a unique approach when lists are embedded within a thing.

When lists are assigned to variables, ThingsDB maintains a single reference
to the underlying data structure. This means that modifying the list through
one reference will also affect any other references to the same list.

(//chapter3)>

A = ["Alice", "Bob"]; // Assign a list to variable "A"

B = A; // Assign "A" to "B"

B.push("Charlie"); // Append "Charlie" to the list

A; // Return with the list using "A"

[

"Alice",

"Bob",

"Charlie"

]

As we can observe, assigning A to B establishes a reference to the same
underlying list data structure. This is evident from the fact that appending
"Charlie" to B also modifies the list accessed through A. Both variables A and B
effectively point to the same list entity.

However, when a list is assigned to a property, ThingsDB creates a distinct
copy of the list. We refer to this type of list as a maintained list because it is
stored and managed within a ThingsDB collection.

(//chapter3)>

a = ["Alice", "Bob"]; // Assign a list to variable "a"

.b = a; // Assign variable "a" to property ".b"

.b.push("Charlie"); // Append "Charlie" to the list on "b"

a; // Return the list assigned to variable "a"

[

"Alice",

"Bob"

]

55



In summary, ThingsDB creates references when assigning lists to variables
and copies them when lists are assigned to properties of a thing. We refer to
the latter lists as maintained lists to differentiate them from the referenced lists
used in variables.

3.2 Nesting and tuples
ThingsDB allows you to store and retrieve multidimensional data using arrays.
However, when you nest arrays within an array, the nested arrays are
converted to tuples. Tuples are immutable, meaning they cannot be changed
after they are created. This is because ThingsDB cannot track and
synchronize changes to nested lists.

(//chapter3)> .m = [

[1, 2, 3],

[4, 5, 6],

];

[[1, 2, 3], [4, 5, 6]]

This code creates a multidimensional array .m with two nested arrays. You can
verify that .m is a list using the type() function:

(//chapter3)> type(.m);

"list"

You can also extend the list by appending another array to it:

(//chapter3)> .m.push([7, 8, 9]);

3

However, when you append a nested list to another list, the nested list is
converted to a tuple. This means that you cannot modify the nested list after
appending it to the outer list.

For example, the following code attempts to append an element to the last
nested array:

(//chapter3)> .m.last().push(10);

LookupError: type `tuple` has no function `push`

Similarly, you cannot modify the elements of a nested tuple using index
assignments:

(//chapter3)> .m.last()[0] = 10;

TypeError: type `tuple` does not support index assignments

56



Tuples have a subset of the methods available to lists. Only methods that do
not manipulate the data structure are available for both tuples and lists.

If you assign a tuple to a variable, the variable holds a reference to the tuple.
However, if you assign a tuple to a thing, it will be converted to a maintained
list. This means that you can modify the elements of the new list after it has
been assigned to a thing. For example, the following code assigns the first
nested array from .m to a variable a:

(//chapter3)>

a = .m.first(); // Get the first item which is tuple [1, 2, 3]

type(a); // Verify that this is still a tuple

"tuple"

However, if you assign the tuple to a property on a thing, for example to .o, it
will be converted to a maintained list:

(//chapter3)> .o = .m.first();

[1, 2, 3]

The variable .o is now a list, and you can modify its elements:

(//chapter3)> .o[0] = 10; // This works!!

10

Table 3.2 - Summary of when ThingsDB employs copying or reference
assignment for a list

Assignment Description

a = b By reference (b is a list)

a = .b By reference (.b is a maintained list)

a = t By reference (t is a tuple)

.a = b Copy to new maintained list (b is a list)

.a = .b Copy to new maintained list (.b is a maintained list)

.a = t Copy to new maintained list (t is a tuple)

a.push([]) Copy to new tuple (a is a list)

3.3 Looping Over a List or Tuple

57



Prior lessons have covered accessing a list item using its index. However, we
have yet to explore iterating through all list elements. To illustrate this concept,
let's create a list:

(//chapter3)> .numbers = [3, 8, 9, 0, 2];

[3, 8, 9, 0, 2]

Here is one approach to iterating through the list:

(//chapter3)> odd = [];

for (n in .numbers) {

if (n % 2) {

odd.push(n); // If n is odd, append it to the list

};

}; // Do not forget this semicolon!!

odd; // Return the list

[3, 9]

In this example, we utilize a trick to check the modulo 2 result, which
returns 0 for even numbers and 1 for odd numbers. Since 0 converts to
false and 1 to true, we can employ this to identify odd numbers.

The for-loop approach offers more flexibility. In addition to the value, they also
provide the index of the value. A for-loop also supports two keywords:
continue, which skips all code after continue and commences the next iteration
of the loop, and break, which halts iteration.

(//chapter3)> even = [];

for (n, i in .numbers) {

if (n % 2) {

continue; // Skip to the next iteration for odd numbers

};

even.push(`{n} at index {i}`); // Append a t-string to the list

if (i == 3) {

break; // If the index is 3, terminate the loop 

};

};

even; // Return the list

[

"8 at index 1",

"0 at index 3"

]

While for-loops offer the most flexibility, for many use cases, methods like
filter(), map(), each() and reduce() provide a more concise and elegant
approach to iterating over and manipulating data structures. Let's examine the
filter() method to replace the first for-loop:

58



(//chapter3)> .numbers.filter(|n| n % 2);

[3, 9]

The filter() method takes a closure as its first argument, which is essentially
an unnamed function. The filter() method iterates over the list and executes
the closure for each item. The arguments that the closure accepts are
specified between the two pipe characters (||), and in the case of a list or
tuple, the filter method provides both the value and index of the item to the
callback function. You are not required to use both arguments, as
demonstrated in our example.

As you can see, the filter() method with a closure provides a more concise
and readable way to filter a list compared to a for-loop. It is a common pattern
in functional programming, and it can significantly improve the readability and
maintainability of your code.

The second for-loop, which utilized the continue and break keywords, seems
more complex to replace by list methods. While the map() method can be
helpful, it is not the ideal solution in this context. The map() method produces a
new list of the same length as the original list, but each value in the list is
generated by the callback function. In our example, we want to create a list of
even numbers with an index smaller than 4. Combining the filter() and map()
methods seems like a viable approach, but it introduces a new issue:

(//chapter3)>

.numbers

.filter(|n, i| n % 2 == 0 && i < 4)

.map(|n, i| `{n} at index {i}`);

[

"8 at index 0",

"0 at index 1"

]

As you can observe, the index values are not as expected. This is because
the filter() method creates a new list, and the map() method operates on this
new list instead of the original list. Consequently, the index values are no
longer preserved.

To address this challenge, we can employ the reduce() method, which offers a
functional approach to iterating over and manipulating data structures. The
reduce() method takes a closure and an initial value as arguments. The
closure is executed for each item in the list, and the initial value is the first
argument in the callback function. For subsequent iterations, the argument
passed to the callback function is the accumulated value from the previous
iteration, and the result of the last iteration will be the result for the reduce
method.

59



(//chapter3)> .numbers.reduce(|o, n, i| {

if (n % 2 == 0 && i < 4) {

o.push(`{n} at index {i}`);

}; o;

}, []);

[

"8 at index 1",

"0 at index 3"

]

Admittedly, this solution is more complex than the for-loop. However, it
demonstrates the power and versatility of functional programming techniques.

3.4 Specialized Methods
Most challenges related to lists can be addressed by combining looping
methods with methods for modifying lists. However, ThingsDB provides
convenient shortcuts for handling common tasks. Here are a few examples:

(//chapter3)> .numbers.sum(); // Calculates the sum of all values

// in the list

22

(//chapter3)> .numbers.sort(); // Sorts the list in ascending order

// and returns a new list

[0, 2, 3, 8, 9]

(//chapter3)> .numbers.is_unique(); // Checks whether all values in

// the list are unique

true

(//chapter3)> .numbers.index_of(9); // Finds the index of the first

// occurrence of the value 9 in

// the list

2

For a complete list of available methods, refer to the official documentation:
https://docs.thingsdb.io/v1/data-types/list/

As ThingsDB evolves, new methods are added. Therefore, when
encountering a problem, it is advisable to first consult the documentation to
see if there is an existing method that can assist you. If you have a specific
requirement, you can submit a pull request with your proposed method, and
one of the ThingsDB developers may consider implementing it for future
releases.

3.5 Lists for Multi-Value Returns
Within ThingsDB, "lists" offer a powerful way to retrieve multiple values from a
single query.

60

https://docs.thingsdb.io/v1/data-types/list/


Imagine you want to fetch both a status code and a corresponding message
from your query. Using lists, you can achieve this elegantly by simply returning
a list containing both desired values.

(//chapter3)> status = 0; message = "success";

[status, message]; // List containing both status code and message

[

0,

"success"

]

By embracing lists for multi-value returns, you unlock a flexible and efficient
approach to retrieving data in ThingsDB.

61



3.6 Quiz - Challenge Your Understanding
1. If we execute the following code:

a = [1, 2, 3];

.b = a;

What will happen?
a. Property .b contains a copy of a
b. Both variable a and property .b reference the same list
c. This code will fail because you cannot assign a list to a property

2. What will happen if we add a list A as a value into another list B?

3. Consider the following code:
a = [["foo", "bar"]];

b = a[0];

c = a;

Which answer is correct?
a. a is a tuple, b is a reference to a list and c is a maintained list
b. a, b and c are all lists
c. a is a list, b is a reference to a tuple and c is a maintained list
d. a and c are the same list and b is a reference to a tuple

4. Can you tell which technique ThingsDB supports for looping over a list or
tuple?

a. each() method
b. map() method
c. reduce() method
d. filter() method
e. for-loop
f. all of the above

5. What is the final result of the following code snippet?
range(2, 5).reduce(|t, n, i| t += i * n, 10);

(Try to answer without executing the code. For reference, the range()
documentation is available at:
https://docs.thingsdb.io/v1/collection-api/range/)

6. Suppose we have the following input:
input = [[1, 2], [3, 4]];

Can you write code which returns with [1, 2, 3, 4] from that given
input?

62

https://docs.thingsdb.io/v1/collection-api/range/


3.6.1 Quiz - Answers

1. Answer "a" is correct. When assigning a list to a property, a copy is
created, resulting in a maintained list. Changes to the original list will not
reflect in the maintained list.

2. A copy of list A will be created as a tuple. Since the nested tuple is
immutable, you cannot modify its contents after creation.

3. Answer "d" is correct. The code does not contain a maintained list as
only variables are used and nothing is assigned to a thing. Nested lists
are always converted to tuples and are accessed by reference when
assigned to a variable.

4. The correct answer is "f". ThingsDB supports all the listed techniques for
iterating over lists and tuples. Each method serves a distinct purpose,
and the for-loop proves particularly valuable when you need to utilize
the break keyword to prematurely terminate the iteration.

5. The result is 21. The function call range(2, 5) produces the list [2, 3, 4]
and the reduce method uses a closure which adds the index multiplied
by the number to a total with a start value of 10. The result is
10 + 0*2 + 1*3 + 2*4 = 10 + 0 + 3 + 8 = 21.

6. While you could use a for-loop or the reduce() method to achieve this,
ThingsDB provides a dedicated method called flat() that simplifies this
process:
input.flat();

(see https://docs.thingsdb.io/v1/data-types/list/flat/)

63

https://docs.thingsdb.io/v1/data-types/list/flat/


Chapter 4 - Things
Let's start this chapter with a new collection named "chapter4" and switch to
its scope. If you are unsure of the process, revisit the end of Chapter 1.6 for a
refresher.

Why is this programming language named ThingsDB?

In ThingsDB, data is organized and stored within things, which are essentially
objects with properties. Every collection starts with an empty root "thing". New
"things" can be created by using the thing() function without arguments, or,
more commonly, you can use curly braces {}:

(//chapter4)> t = {}; // Create an empty thing

t.x = 4; // Assign property "x" with value 4 to "t"

t.y = 2; // Assign property "y" with value 2 to "t"

t; // Return "t"

{

"x": 4,

"y": 2

}

This can be simplified by initializing the thing with the properties in curly
braces:

(//chapter4)> t = {x: 4, y: 2,};

{

"x": 4,

"y": 2

}

This initialization syntax only works for properties that adhere to the ThingsDB
naming convention, which is the same as the convention for variable names
(see 1.3 Variables and Properties). The properties are defined as key-value
pairs separated by commas. You can omit the comma after the last property,
since ThingsDB will ignore it if no other key-value pairs follow.

The same principle applies when initializing lists. The last comma in a
list initialization is optional if no further items follow. For instance, both
[nil] and [nil,] are valid representations of the same list.

ThingsDB supports a shorthand notation to initialize a thing when using a
variable and using the same variable name as the property name:

64



(//chapter4)>

foo = 6;

bar = 7;

t = {foo:, bar:,};

{

"bar": 7,

"foo": 6

}

This syntax is equivalent to writing t = {foo: foo, bar: bar}; but it eliminates
the need to repeat variable names.

4.1 Things for Descriptive Multi-Value Returns
While lists, as shown in Chapter 3.5, provide a simple way to return multiple
values, things provide a more descriptive alternative. They allow assigning
meaningful names to each value, enhancing clarity and reducing reliance on
positional interpretation. This structure improves readability and
understanding, but comes at a slight network bandwidth cost compared to
lists.

Example:

(//chapter4)> status = 0; message = "success";

{

status:,

message:,

}; // Thing containing both status code and message

{

"message": "success",

"status": 0

}

For optimal efficiency of read only queries, construct the thing
containing multiple values either at the end of your query or after a
return statement. Setting individual properties one by one might
trigger unnecessary updates. While this has no effect on queries
modifying the collection, it can lead to less efficient execution for
queries which are intended to be read only.

4.2 Thing IDs
Once a thing is stored, meaning it is connected to the collection root, it is
assigned a unique identifier or ID. Back in Chapter 1.1 we already saw that

65



our root thing had an ID and that we could ask for this ID using the id()
method.

(//chapter4)> .id(); // ID for the collection root

1

(//chapter4)> {}.id(); // Unattached thing lacks an ID

null

(//chapter4)> (.t = {}).id(); // Assign a new thing to property "t",

// guaranteeing a unique ID.

2

A thing possesses no ID as long as it remains unattached to the collection. In
the last example, we attached a new thing to property t within the root and
immediately queried its ID. The response displayed a unique identifier.

Instead of explicitly requesting the ID, it is also accessible as a reserved
property named "#" within the thing's response.

(//chapter4)> .t;

{

"#": 2

}

However, it is important to note that "#" is not a genuine property of the thing,
as evidenced by the following code snippets:

(//chapter4)> .t["#"]; // Key ‘#' does not exist

LookupError: thing `#2` has no property `#`

(//chapter4)> .t.len(); // The length is 0

0

(//chapter4)> bool(.t); // Empty thing evaluates as false and .t is empty

false

As ThingDB implicitly assigns IDs to things, it is crucial to grasp when this
occurs. While the earlier example might seem straightforward, it is essential to
recognize its nuances.

The code below employs the assert() function, which triggers an exception if
the provided expression evaluates to false. This, along with the is_nil() and
is_int() functions, facilitates straightforward testing for ID existence.

66



(//chapter4)>

arr = []; // Create an empty list

a = {name: "Alice"}; // Create a thing with a name property

assert(is_nil(a.id())); // Confirm that the thing has no ID

arr.push(a); // Add the thing to the list

assert(is_nil(a.id())); // Verify that the thing still lacks an ID

.arr = arr; // Assign the list to a collection root property

assert(is_int(a.id())); // Verify that the thing now has an ID

a;

{

"#": 3,

"name": "Alice"

}

In this example, we observe that the ID is generated when the thing is linked
to the collection. Initially, we assigned the thing to a variable, followed by
adding the variable to the list. Since the list remained unattached to the
collection, the thing retained its lack of an ID. It is only when we incorporated
the list as a property of the collection root that it became associated with the
collection, triggering ID assignment.

Another noteworthy aspect is that ThingsDB always interprets things by
reference. This observation is evident in the fact that we kept checking the
original variable "a".

Once an ID is assigned to a thing, it remains permanently associated with that
thing and cannot be altered or removed.

ThingsDB supports multiple references to the same ID, allowing you to link
distinct properties or collections to the same underlying thing. This is
demonstrated in the code snippet:

(//chapter4)> .t.p = .arr.first();

{

"#": 3,

"name": "Alice"

}

As evident, property p of thing t points to the same thing as the first element in
the list.

If you know the ID of a specific thing, you can directly retrieve it using the
thing() function. When provided with an integer as the first argument,
ThingsDB searches the collection for the thing with that ID. This becomes
particularly useful in practical scenarios.

67



(//chapter4)> thing(3).name = "Bob";

"Bob"

(//chapter4)> thing(99).name = "Charlie";

LookupError: collection `chapter4` has no `thing` with ID 99

The first example successfully modifies the name property of the thing with ID 3
to "Bob". The second query fails because the collection does not contain a
thing with ID 99.

Let's review the current state of the collection by querying the root() thing:

(//chapter4)> root();

{

"#": 1,

"arr": [{"#": 3}],

"t": {"#": 2}

}

This output might raise an eyebrow. While the root() with properties arr and t
is fully displayed, the p property of the thing with ID 2 and the name property of
the thing with ID 3 are missing.

This is because ThingsDB, by default, returns things only one level deep. In
this instance, the root() represents the first level, and the things within list arr
and the thing within t are considered the second level. This safety measure
prevents accidentally returning the entire collection. While this might be
acceptable in our example due to its small size, it could pose issues with
larger collections.

4.3 Control Response with return Statement
To address the issue of returning only one level deep, we can utilize the return
keyword, which was introduced in Chapter 1.5. This statement accepts a
second argument that specifies the deep level:

(//chapter4)> return root(), 3;

{

"#": 1,

"arr": [{"#": 3, "name": "Bob"}],

"t": {"#": 2, "p": {"#": 3, "name": "Bob"}}

}

With this modified query, we now see the root() and its properties at level 1,
the thing with ID 3 within arr at level 2, the thing with ID 2 at level 2, and the
thing with ID 3 again, this time residing on property p at level 3.

68



While it is generally recommended to keep the default deep level
unchanged, it is possible to modify it using the set_default_deep()
function. The current deep setting can be checked using the deep()
function within a collection or through the collections_info() function
in the @thingsdb scope.

The return statement accepts an optional third argument, which allows you to
specify flags that modify the returned data. Currently, only one flag is
supported: NO_IDS. When enabled, this flag prevents ThingsDB from including
ID values in the response.

(//chapter4)> return root(), 3, NO_IDS;

{

"arr": [{"name": "Bob"}],

"t": {"p": {"name": "Bob"}}

}

While you might initially consider using the return statement frequently to
control the deep level or incorporate the NO_IDS flag, ThingsDB offers a more
elegant and streamlined approach to retrieving the desired data. This will be
introduced in Chapter 10, where we delve into typed things and wrapping.

4.4 Looping Over a Thing
We can use a for-loop to iterate through the key value pairs of a thing.

(//chapter4)> .gps = {lat: 51.36, long: 5.23};

for (key, value in .gps) {

log(`{key}: {value}`);

};

WARNING:root:ThingsDB: lat: 51.36 (2)

WARNING:root:ThingsDB: long: 5.23 (2)

null

The for-loop is similar when used on a thing compared to when iterating a list.
Only the arguments are different. While iterating over a list accepts a value
and index, a thing accepts a key and value.

69



In this code snippet, we introduced a new log() function (distinct from
the loge() function that calculates the natural logarithm (base e) of a
number). This log() function serves debugging purposes and operates
as follows: Upon execution, it generates a warning log message to the
console where the ThingsDB Node is running and emits a warning
event to the client initiating the query. This warning event precedes the
transmission of query results. The ThingsDB Prompt conveniently
handles this event by displaying the warning message within the
prompt. While real-world implementations may vary, warnings are
typically logged for future reference.

Similar to lists, a thing also offers methods for iterating over its contents. The
provided example demonstrates how to achieve the same result as the for-
loop using the each() method:

(//chapter4)> .gps.each(|key, value| log(`{key}: {value}`));

WARNING:root:ThingsDB: lat: 51.36 (2)

WARNING:root:ThingsDB: long: 5.23 (2)

null

Additional looping methods include filter(), map(), and vmap().

4.5 Value Restriction
While keys in ThingsDB are always restricted to strings, values can have any
type. However, if a specific type is required for all values, a value restriction
can be applied to enforce this constraint.

Consider our existing "gps" example:

(//chapter4)> .gps.restriction();

null

The restriction() method returns nil, indicating that no value restriction is
currently applied to the "gps" thing.

Attempting to apply an invalid restriction to a non-empty thing will result in an
error. For instance, trying to restrict "gps" to integer values will fail because it
already contains float values:

(//chapter4)> .gps.restrict("int");

ValueError: at least one of the existing values does not match the desired

restriction

70



To successfully apply a value restriction, all existing values must adhere to the
specified type. In this case, we can successfully apply a float restriction:

(//chapter4)> .gps.restrict("float");

{

"#": 5,

"lat": 51.36,

"long": 5.23

}

Once a value restriction is applied, attempting to assign a value of an
incompatible type will trigger a type error:

(//chapter4)> .gps.lat = nil;

TypeError: restriction mismatch

This error prevents invalid value assignments and ensures data integrity.

4.6 Self-References
Lists and other data types in ThingsDB do not allow for self-references due to
the creation of copies (tuple conversion) when lists are nested. However, self-
references are common within the structure of things.

Consider a simple example of creating a book and its author:

(//chapter4)> // Create a book and author

author = {name: "Katja Hoyer"};

.book = {

title: "Beyond the wall",

author:,

};

{

"#": 6,

"author": {"#": 7},

"title": "Beyond the wall"

}

Since we only retrieve the first deep level of detail, we do not see the entire
author thing, but we can see that both the book and author have unique IDs (6
and 7, respectively).

To retrieve the author of the book, we can simply access the author property
of the book thing:

(//chapter4)> thing(6).author.name; // ID 6 is the book

"Katja Hoyer"

71



To retrieve the books written by the author, we can add a books property to the
author thing and populate it with the book:

(//chapter4)> thing(7).books = [.book]; // ID 7 is the author

nil; // Return nil as we do not need the assignment as response

null

Now, we can retrieve data in both directions, but we have created a nested
self-reference for both the book and the author.

You might wonder what will happen if we use a large deep value and ask for
either the book or the author? ThingsDB intelligently handles the situation by
only returning the IDs of self-referential objects. This prevents infinite loops
and ensures data integrity:

(//chapter4)> return .book, 99;

{

"#": 6,

"author": {

"#": 7,

"books": [{"#": 6}],

"name": "Katja Hoyer"

},

"title": "Beyond the wall"

}

Establishing two-way relationships between things is a common practice in
ThingsDB, but managing these connections manually can be cumbersome
and error-prone. To address this challenge, ThingsDB introduces a
sophisticated solution that simplifies and streamlines relationship
management.

In Chapter 9, we'll delve into the details of this solution and explore its
capabilities in detail. But before we embark on this journey, we encourage you
to assess your comprehension by taking the quiz provided. This will help
solidify your understanding of things and prepare you for the next chapter,
where we'll explore the powerful concept of sets in depth.

72



4.7 Quiz - Challenge Your Understanding
1. Looking at the following code, will the thing "t" receive an unique ID and

if so, at which line? (a-e)
a. t = {};

b. p = [t];

c. .p = p;

d. .t = t;

e. // "t" still lacks an ID

2. What will be the response for a query using the following code?
return {x: 1, y: 2}, 0;

3. What function is available to verify the deep value for a collection using a
collection scope?

4. How can you see the ID of a thing in a query response? For example, in
the response for this code?
.x = {};

5. Which of the following code examples will work without returning an
error?

a. {4: 2}.restrict("int");

b. {}.restrict("int").x = 123;

c. {m: 'Hello!'}.restrict("str");

d. {}.restrict("int").x = 1.0;

e. {pi: 3}.restrict("float").pi = MATH_PI;

6. Can a list in ThingsDB be a part of itself?

7. Can a thing in ThingsDB be a part of itself?

8. Given the existing thing:
.point = {x: 5, y: 7};

Can you create a query to return the following desired response:
{"x": 5.0, "y": 7.0}

The returned object should contain float values instead of integer values
for the x and y properties.

73



4.7.1 Quiz - Answers

1. At line "c". The thing is a member of the list p which on this line is
assigned to the collection root via property p.

2. The deep value has been set to 0, so the query will return an empty
object: {}

3. The deep() method can be used to retrieve the current deep value for a
collection in the collection scope.

4. The ID of a thing is returned as the # property in the thing object unless
explicitly the NO_IDS flag is used.

5. The code samples "b" and "c" will execute without errors. Code snippet
"a" will fail because keys must be of type string, and snippet "d" will fail
because the thing is restricted to integers and the value 1.0 is a float.
Snipped "e" fails because the initial value of pi is an integer, and
attempting to apply the restriction to type float will result in an error.

6. No, a list cannot be a part of itself. Lists are copied when nested, so they
cannot be referenced by themselves.

7. Yes, a thing can be a part of itself. Things are always accessed by
reference, so they can be self-referential.

8. The easiest way to accomplish this is by using the vmap() method which
returns a new thing with equal keys but values computed as a result of a
given closure callback.
.point.vmap(|v| float(v));

(see https://docs.thingsdb.io/v1/data-types/thing/vmap)

74

https://docs.thingsdb.io/v1/data-types/thing/vmap


Chapter 5 - Sets
Just like in previous chapters, we shall begin by creating a new collection and
switching the prompt to that collection.

In this chapter, we'll explore the concept of sets in ThingsDB. Let's start by
creating an empty set.

(//chapter5)> .mammals = set();

[]

Notice that despite creating a set, the response displays an empty list. This is
because MessagePack, the underlying data serialization format for ThingsDB,
does not have explicit support for sets. As a result, sets are always converted
to lists in responses.

To add elements to a set, we can utilize the add() method. Sets can only
accommodate things. Attempting to add other data types will trigger a type
error.

(//chapter5)> .mammals.add("dog");

TypeError: cannot add type `str` to a set

Let's add some mammals to the set. We can add multiple things
simultaneously by separating them with commas.

(//chapter5)> .mammals.add(

{animal: "dog"},

{animal: "cat"},

{animal: "elephant"},

{animal: "lion"},

);

4

The number of things successfully added to the set is returned. In this
instance, we added four new elements.

Let's examine the set we've created:

(//chapter5)> .mammals;

[

{"#": 2, "animal": "dog"},

{"#": 5, "animal": "lion"},

{"#": 4, "animal": "elephant"},

{"#": 3, "animal": "cat"}

]

75



As you can see, all things have been assigned unique IDs, but the order of
elements does not match our expectation. This is because sets are inherently
unordered.

Due to this lack of order, retrieving an element by index is not possible.

(//chapter5)> .mammals[0];

TypeError: type `set` is not indexable

Each thing can only exist once within a set. Remember that ThingsDB
compares things by reference, so even if two things have identical properties,
they are considered distinct entities.

(//chapter5)> .mammals.add({animal: "dog"}); // Add another dog

1

Despite having the same properties (animal: "dog"), this dog is considered a
different entity due to reference comparison. It is not the same "dog"
previously added, so it gets included in the set.

(//chapter5)> animal = .mammals.one(); // Take one element from the set

.mammals.add(animal); // Try to add that animal

0

The final query yielded 0. This is because the animal already exists within the
set, and calling the add() method did not introduce any new elements.

5.1 Set Operations
Before moving forward, let's create two more sets, one for birds and another
for reptiles. (We apologize to any fish or other animal species that weren't
included; we'll focus on these three classes for now ;-)

(//chapter5)> .birds = set(

{animal: "parrot"},

{animal: "flamingo"},

);

.reptiles = set(

{animal: "turtle"},

{animal: "snake"},

);

nil; // Return nil as we do not need a response

null

Now that we have our sets ready, let's create a zoo and populate it with some
animals.

76



(//chapter5)>

animals = ["lion", "elephant", "flamingo", "turtle", "snake"];

all = .mammals | .birds | .reptiles;

.zoo = all.filter(|x| animals.has(x.animal));

.zoo.len();

5

Let's break down what happened here:

1. We defined a list (animals) containing the animals we want in the zoo.
2. Using the union operator (|), we created a new set (all) that combines

the mammals, birds, and reptiles sets.
3. We employed the filter() method to iterate over the all set and select

only those animals that are also present in the animals list.
4. Finally, we used the len() method to count the number of animals in the

zoo set.

Sets in ThingsDB provide a range of useful operations that enable efficient
manipulation of data. These operations, summarized in Table 5.1, facilitate
tasks such as combining, filtering, and finding specific subsets of things within
sets.

Table 5.1 - Set operations

Operator Operation Description

| (union) A | B The set of things that are in either A or B.

& (intersection) A & B The set of things that are in both A and B.

- (difference) A - B The set of things that are in A but not B.

^ (symmetric
difference)

A ^ B The set of things that are in either A or B,
but not in both.

We have already employed the union operation to populate our zoo with a
diverse set of animals. Now, let's delve into additional examples showcasing
how set operations can be utilized within the context of our zoo.

5.1.1 Identifying Birds Not in the Zoo

The - operator allows us to find birds that are not part of the zoo:

(//chapter5)> .birds - .zoo;

[

{"#": 8, "animal": "parrot"}

]

77



This command retrieves the birds set and subtracts the zoo set, resulting in a
new set containing only the birds that do not reside in the zoo.

5.1.2 Selecting Warm-Blooded Animals in the Zoo

We can combine the | and & operators to find warm-blooded animals that are
also in the zoo:

(//chapter5)> (.mammals | .birds) & .zoo;

[

{"#": 7, "animal": "flamingo"},

{"#": 5, "animal": "lion"},

{"#": 4, "animal": "elephant"}

]

This expression combines the mammals and birds sets using |, then intersects
the resulting set with the zoo set, effectively selecting only the warm-blooded
animals that are in the zoo.

These examples demonstrate how set operations can effectively manage and
analyze data within sets, providing a powerful tool for building efficient and
data-driven applications.

5.2 Determining Set Membership and
Supersets/Subsets
In addition to the set operations we've covered, ThingsDB sets provide
several additional useful operators and methods. These enable us to
determine whether a set contains all things of another set, verify whether a set
is a subset or superset of another, and check whether a particular thing
belongs to a set.

5.2.1 Verifying Set Membership

The has() method can be employed to determine whether a specific thing
exists within a set. This method is particularly efficient for sets compared to
lists, as it does not require iterating through the entire collection to perform the
check.

(//chapter5)> flamingo = .birds.find(|b| b.animal == "flamingo");

.zoo.has(flamingo);

true

78



5.2.2 Checking Subsets and Supersets

To determine whether one set is a subset of another, we can use the <=
operator. This operator checks if all elements of the first set are also present
in the second set.

(//chapter5)> .reptiles <= .zoo; // Determines if "reptiles" is a

// subset of "zoo"

true

Conversely, to verify whether a set is a superset of another, we employ the >=
operator. This operator checks if the second set contains all the elements of
the first set.

(//chapter5)> .zoo >= .reptiles; // Determines if "zoo" is a

// superset of "reptiles"

true

To distinguish between proper subsets and supersets, which explicitly exclude
the possibility of equality, the < and > operators are employed. These
operators function similarly to their respective <= and >= counterparts, but they
return false when the sets are equal.

Table 5.2 - Subset and Superset operations

Operator Operation Description

<= is subset Determines if all things of the first set are
contained within the second set, ignoring equality.

< is proper
subset

Determines if all things of the first set are
contained within the second set, and the two sets
are not equal.

>= is superset Determines if all things of the second set are
contained within the first set, ignoring equality.

> is proper
superset

Determines if all things of the second set are
contained within the first set, and the two sets are
not equal.

5.3 Copy or Reference
Assignments with sets follow a similar pattern to lists. When assigning a set to
a variable, it is treated as a reference. However, if you assign a set to a

79



property of a thing, a copy of the set will be created.

Nested sets are not supported in ThingsDB. Sets can only contain
things. However, you can add a set to a list. In this case, a copy of the
set will be made, and it will be converted into an immutable tuple.

Table 5.3 - Summary of when ThingsDB employs copying or reference
assignment for a set

Assignment Description

a = b By reference (b is a set)

a = .b By reference (.b is a maintained set)

.a = b Copy to new maintained set (b is a set)

.a = .b Copy to new maintained set (.b is a maintained set)

a.push(set()) Copy to new tuple (a is a list)

80



5.4 Quiz - Challenge Your Understanding
1. What data types can be stored in a ThingsDB set?

2. Determine the resulting set after performing the following operation:
set(a, b) - set(b, c)

3. Which of the following expressions evaluates to true?
a. set(a, c) <= set(a, b, d)

b. set(a, c) >= set(a, b, d)

c. set(a, c) > set(a, c)

d. set(a, c) < set(a, b, c)

4. How does a client receive a set when it is returned in a response from
ThingsDB?

5. Can you explain what will happen when you append a set as an element
to a list?

81



5.4.1 Quiz - Answers

1. Only unique "things" are allowed in a set.

2. The resulting set after performing the operation is set(a). The - operator
in ThingsDB is used to perform set difference, which removes elements
from the first set that are also present in the second set.

3. The only expression which evaluates to true is the expression "d". The
set with things a and c is a subset of the set with things a, b and c.

4. Because sets are not directly supported by the ThingsDB communication
protocol, they must be converted to a more fundamental data type when
sent to a client. Therefore, the set is converted into a list, which is a
sequence of ordered elements. While this conversion enables clients to
receive and process sets, it is essential to remember that sets are
inherently unordered collections. As a result, you cannot rely on the
order of things in the returned list as they may not reflect the order in
which the things were added to the set.

5. When a set is appended to a list, ThingsDB will create a copy and
convert the set into a tuple, which is an immutable collection of
elements.

82



Chapter 6 - Procedures
In ThingsDB, we've encountered built-in functions like is_nil() and methods
like .len(), which are functions called on instances of a type. We've also
explored closures, which are unnamed functions commonly used as callback
arguments to iterate over lists, sets or things.

ThingsDB introduces another variation of these concepts called procedures.
Procedures bind a name to a closure and expose the procedure for direct
execution. This means we can call procedures directly, eliminating the need
for queries. Procedures are typically created within a collection, but ThingsDB
also offers the /thingsdb scope for procedures that simplify management tasks
like user creation which we will explore later in this chapter.

In this chapter, we'll begin crafting a to-do application, empowering you to
manage Alice's tasks and keep her organized.

First, let's create a new collection named "todos" using the /thingsdb scope
and switch to the //todos scope.

(/thingsdb)> new_collection("todos");

"todos"

(/thingsdb)> @ //todos

(//todos)>

To manage Alice's to-do items, we'll create a list to store them. This list will
hold strings representing the to-do items. To control what gets added to the
list, we'll use a procedure.

(//todos)> .todos = []; // Create an empty list for to-do items

[]

Instead of directly adding to-do's to the list, we'll create a procedure to
manage this process.

(//todos)> new_procedure("add_todo", |body| {

"Adds a to-do to the list."; // Docstring

assert(is_str(body) && body); // Check if the input is a

// non-empty string

.todos.push(body); // Add the to-do to the list

nil;

});

"add_todo"

This creates a procedure named add_todo that takes a single todo argument.
The docstring specifies the procedure's purpose and is optional. The assert()

83



function ensures that the input is a valid, non-empty string.

To utilize the add_todo procedure, we can simply call it directly in a query,
similar to a regular function.

(//todos)> add_todo("Read a book");

OperationError: closures with side effects require a change but none is

created; use `wse(...)` to enforce a change; see

https://docs.thingsdb.io/v1/collection-api/wse

ThingsDB throws an error indicating that the procedure contains a closure
which may introduce changes to the collection and requires a change to
synchronize the state. This is because ThingsDB must ensure data
consistency across all nodes when changes occur.

6.1 Side Effects and Changes
To explicitly signal to ThingsDB that the query involves side effects and
requires a change, we can use the wse() function. This function informs
ThingsDB that the query will modify the collection and necessitates a change
to maintain data integrity.

In most cases, ThingsDB automatically detects and handles the need
for changes when queries modify data. However, there may be
situations where this automatic detection is not possible or desired.

To explicitly instruct ThingsDB to initiate a change, the wse() (with-
side-effects) function can be used. This function explicitly informs
ThingsDB that the query involves modifications to the collection and
requires a change operation to ensure data consistency across nodes.

Conversely, there may be scenarios where ThingsDB incorrectly
identifies a change as necessary, even though it is not the case. To
prevent unnecessary changes, the nse() (no-side-effects) function can
be employed. This function tells ThingsDB that the query does not
involve any data modifications and therefore does not require a
change operation.

By utilizing these functions, developers can effectively manage
change propagation in ThingsDB, ensuring data consistency and
avoiding unnecessary change operations.

Here is the corrected code snippet with the wse() function:

(//todos)> wse(); // Tell ThingsDB to initiate a change

add_todo("Read a book");

null

84



By including the wse() function, ThingsDB recognizes the potential data
modification and initiates the necessary change operations to maintain
consistency across nodes. This approach ensures that any changes made by
the procedure are applied in a coordinated manner, preserving the integrity of
the data managed by ThingsDB.

In addition to calling procedures within queries, ThingsDB also allows direct
procedure calls without the need for queries. While the ThingsDB Prompt
does not support direct procedure calls, this opens up the opportunity to utilize
Python code to interact with ThingsDB. As mentioned earlier, Python is not the
only programming language supported by ThingsDB; there are also clients
available for C#, Go, PHP, JavaScript/Node.js and maybe more by the time
you read this book. Furthermore, procedures can be invoked through the
ThingsDB HTTP API, a topic we'll explore in Chapter 16.

6.2 Python
To streamline the development process, we'll create a reusable template that
serves as a foundation for our code examples. This template will encapsulate
the common connection and authentication steps, allowing us to focus on the
specific procedure call logic.

Create a file named template.py and save the following code:

import asyncio

from thingsdb.client import Client

async def work(client: Client):

pass

async def main():

client = Client()

client.set_default_scope('//todos')

await client.connect('localhost') # Replace with the actual ThingsDB

# server address

try:

await client.authenticate('admin', 'pass') # Replace with your

# ThingsDB credentials

await work(client)

finally:

client.close()

await client.wait_closed()

asyncio.run(main())

This template assumes ThingsDB is running on localhost. If this is not the
case, modify the connect() function call to specify the correct address and,
optionally, a port number. Similarly, update the authenticate() function call with
your actual ThingsDB credentials.

85



To test the template, run the following command:

$ python template.py

$

The code should execute without errors, demonstrating the successful
connection and authentication with ThingsDB.

6.2.1 Run Procedure

To execute the add_todo procedure directly, we'll create a copy of the template
Python script and name it add_todo.py.

Within the work function, we'll modify the code to handle user input and invoke
the procedure:

async def work(client: Client):

todo_body = input("To-do body: ") # Prompt user for to-do item

await client.run('add_todo', body=todo_body) # Call the add_todo

# procedure

Since we previously called client.set_default_scope('//todos') in the
template, we do not need to explicitly specify the scope in this
instance.

Save the file and run the following command to execute the code:

$ python add_todo.py

To-do body: Brush your teeth

$

If successful, no errors should be shown.

6.2.2 Perform a Query

Next, create another file based on the template and name it search_todos.py:

async def work(client: Client):

needle = input("Search for: ") # Prompt user for search input

res = await client.query("""//ti

.todos.filter(|todo| todo.contains('""" + needle + """'));

""")

print(res)

86



This code utilizes a multi-line string to define the query and prefixes it
with //ti to improve syntax highlighting in some IDEs. However, this is
not mandatory and does not affect the query execution.

Execute the following command to run the search_todos.py file:

$ python search_todos.py

Search for: book

['Read a book']

The output confirms that the to-do item "Read a book" has been added and
retrieved successfully.

6.2.3 Prevent Code Injections

While the code works, it also contains a potential security flaw. The direct
embedding of user input into the query structure makes it vulnerable to code
injections, allowing malicious code to manipulate the collection's properties.

Consider the scenario where a malicious user inputs the following:

$ python search_todos.py

Search for: ' + {.hacked = true; "book";} + '

['Read a book']

This input, when passed directly into the query, would effectively create an
unauthorized property .hacked on the //todos collection root. This highlights
the potential for code injections to compromise the integrity of ThingsDB data.

To address this vulnerability, it is essential to separate user input from the
query structure by using variables. This technique allows for a more secure
and controlled handling of user-provided data.

To enhance security and prevent code injections, we'll modify the
search_todos.py code to use variables for user input:

async def work(client: Client):

needle = input("Search for: ") # Prompt user for search input

res = await client.query(

"""//ti

.todos.filter(|todo| todo.contains(needle));

""",

needle=needle)

print(res)

87



The original code, which directly embedded the user input into the query, was
vulnerable to code injections. By using variables, we can isolate the user input
and prevent it from affecting the query structure. This safeguard protects the
integrity of the ThingsDB database and ensures that only authorized
operations are executed.

Another benefit of separating input from the query structure is that it
enables ThingsDB to cache the query, independent of the user input.
This caching mechanism can significantly improve the performance of
frequently executed queries, especially those that involve user-
provided data.

By isolating user input, ThingsDB can store the compiled query
separately from the input values. This allows the database to pre-
compile and optimize the query for later execution, regardless of the
specific input received. As a result, subsequent executions of the
same query can be performed more efficiently, reducing response
times and improving overall application performance.

In contrast, if the user input were directly embedded within the query,
ThingsDB would need to recompile the query each time it was
executed with different input. This would lead to increased processing
overhead and potentially slower query performance.

6.2.4 Migrating from Query to Procedure

To enhance code organization, we'll migrate the "search_todos" query to a
reusable procedure. This approach encapsulates the search logic and makes
it easily accessible from multiple parts of the application.

Create the procedure in a tool like things-prompt or ThingsGUI. Having
explored code-based query execution, you might even prefer to use Python or
some other language for code execution. In this book we'll stick with the
things-prompt for simple code snippets:

(//todos)> new_procedure("search_todos", |needle| {i

"Search for todo's";

.todos.filter(|todo| todo.contains(needle));

});

"search_todos"

Update the work method in search_todos.py to call the procedure:

async def work(client: Client):

needle = input("Search for: ") # Prompt user for search input

res = await client.run("search_todos", needle=needle)

print(res)

88



By using a procedure, we've encapsulated the search logic and made it
reusable. This approach promotes code modularity, improves maintainability,
and reduces development complexity.

6.3 Requesting Procedure Information
Procedures are stored within a scope, but they are not directly attached to the
root of the collection. To retrieve information about procedures within a
specific scope, the procedures_info() function is employed. This function
returns a list of procedure information objects, each containing detailed
metadata about the procedure.

Calling procedures_info() within the //todos scope produces the following
output:

(//todos)> procedures_info();

[

{

"arguments": ["todo"],

"created_at": 1706363614,

"doc": "Adds a to-do to the list.",

"name": "add_todo",

"with_side_effects": true

},

{

"arguments": ["needle"],

"created_at": 1706540544,

"doc": "Search for todo's",

"name": "search_todos",

"with_side_effects": false

}

] //-- some information is left out to keep the sample comprehensible

The properties of each procedure in this list provide valuable insights. The
with_side_effects property indicates whether invoking the procedure modifies
the dataset or not. Additionally, each procedure's arguments are listed, and a
brief description of its functionality is provided in the doc property (this is the
docstring we provided earlier in the closure body).

6.3.1 Extracting Properties from Information Objects

Now that we have a basic understanding of procedure information objects,
let's focus on extracting just the procedure names.

89



(//todos)> type(procedures_info());

"list"

(//todos)> type(procedures_info().first());

"mpdata"

Observing the data types involved, we can see that the procedures_info()
function returns a list of mpdata objects, not things. MPdata stands for
"MessagePack-Data" and represents serialized MessagePack data.
Information objects in ThingsDB are pre-serialized to minimize work and
enhance performance.

To extract the procedure names, we can utilize the load() method provided by
the mpdata type. This method allows us to deserialize mpdata objects into
ThingsDB objects, enabling us to access their properties.

Applying load() to a procedure information object results in a thing object.
This enables us to access the name property of the procedure, which provides
the procedure's identifier.

With this approach, we can efficiently retrieve a list of procedure names using
the following code:

(//todos)> procedures_info().map(|mpdata| mpdata.load().name);

[

"add_todo",

"search_todos"

]

This concise code demonstrates the ability to extract relevant information from
pre-serialized MessagePack data.

6.3.2 Additional Procedure Functions

We've covered the new_procedure() and procedures_info() functions, but
ThingsDB offers a few more functions that you can find in a dedicated
documentation section.

For detailed information on these additional procedure functions, please refer
to the ThingsDB documentation: https://docs.thingsdb.io/v1/procedures-api/

6.4 Thinking Ahead
While the current setup of the to-do application works well for Alice, it is
important to consider scalability and maintainability from the start. While full
admin access might be sufficient for now, granting such extensive permissions
to the Python code might not be the best approach in the long run.

90

https://docs.thingsdb.io/v1/procedures-api/


To address this, we can create a dedicated user for the Python code and
grant them only the necessary permissions. This will provide a more secure
and controlled environment for managing user access.

Using the grant() function, we can assign the appropriate permissions to the
newly created user. The table below summarizes the various permission flags
available in ThingsDB:

Table 6.4 - Summary of permission flags

Mask Description

QUERY

(1)
Grants access to execute queries

CHANGE

(2)
Grants access to make changes

GRANT

(4)
Grants administrative privileges, allowing users to grant and
revoke permissions to other users

JOIN (8) Grants join (and leave) privileges to a room

RUN (16) Grants access to run procedures directly

USER

(27)
Combination of QUERY, CHANGE, JOIN and RUN

FULL

(31)
Combination of all privileges

Since we've migrated all the queries from the Python code to procedures, we
no longer require QUERY access. Therefore, we can safely grant the user CHANGE
and RUN permissions, which will allow them to modify data and execute
procedures within the "todos" scope.

By adopting this approach, we can effectively differentiate between the
administrative user (Alice) and the Python code, ensuring that the code has
the appropriate level of access to perform its tasks while maintaining security
and control over the system.

Instead of creating users manually, we can create a procedure to automate
the process. This will make it easier to manage users and create new ones as
needed.

Let's create a procedure called new_todo_user in the /thingsdb scope that takes
a user name and access flags as input and generates a unique token for

91



authentication.

(//todos)> @ /t; // Switch to the /thingsdb scope

(/t)> new_procedure("new_todo_user", |name, access| {

"Creates a new user with access to the todos scope.";

new_user(name);

grant('//todos', name, access);

new_token(name);

});

"new_todo_user"

This procedure first creates a new user with the specified name using the
new_user() function. Then, it grants the desired user permission for the //todos
scope using the grant() function. Finally, it generates a unique token for the
user using the new_token() function.

Instead of using a token, we could have opted for username and
password authentication through the set_password() function.
However, tokens offer several advantages: they are strong, easily
revoked (using: del_token()), and allow for issuing multiple tokens per
account for different purposes.

To create a user named py and obtain their token, run the following command:

(/t)> wse(); new_todo_user('py', RUN | CHANGE);

"9U0unWQglFlxl1DUBX5JsR"

This will create a user named py and provide you with their token, which you
should copy and paste into the corresponding Python script.

Now, modify the authentication call in the template.py and search_todos.py
scripts to replace the default token with the generated one:

…

try:

await client.authenticate('9U0unWQglFlxl1DUBX5JsR')

await work(client)

…

Replace "9U0unWQglFlxl1DUBX5JsR" with the actual token you obtained from the
previous command.

With this change, the Python scripts should now use the py user's token to
authenticate with ThingsDB and access the //todos scope. This provides a
more secure and maintainable approach to managing user access.

92



6.5 Quiz - Challenge Your Understanding
1. Under what circumstances is the wse() function necessary?

2. Will the following query succeed in executing the set_x() procedure and
modifying the corresponding property in the collection?
set_x(123);

3. How can you invoke a procedure in ThingsDB?
a. Call the procedure directly from a query
b. Use the ThingsDB protocol to run the procedure directly
c. Use the HTTP API to run the procedure
d. All of the above

4. In the following query, what is the data type of the variable info?
info = procedure_info("set_x");

type(info); // ???

5. Which authentication methods does ThingsDB support?

6. If you want to restrict your application to executing only predefined
procedures that do not modify the state, which authentication flag(s)
should you use?

a. QUERY

b. READ

c. CHANGE

d. RUN

e. USER

7. Verify if the .hacked property is present in the todos collection. If so, can
you remove the property to ensure the integrity of the data?

93



6.5.1 Quiz - Answers

1. ThingsDB employs intelligent algorithms to identify queries with side
effects that modify system state. However, in certain scenarios, these
algorithms may fail to detect side effects, necessitating the explicit use of
the wse() function. One such instance arises when invoking procedures
that themselves encompass side effects.

2. No, the provided query will not work without explicitly invoking the wse()
function.

3. Answer "d". All methods can be used to execute procedures in
ThingsDB.

You can simply include the procedure's name in your query, and
ThingsDB will execute the procedure and return the result.
The ThingsDB protocol allows you to make a direct call to a
procedure without invoking a query. Native clients for popular
programming languages, including Python, C#, Go, PHP,
JavaScript/Node.js and more, provide built-in support for this direct
procedure invocation.
If you have enabled the HTTP API, you can also use it to call
procedures. This can be a good option if you want to call
procedures from a web application or other client that does not
support the ThingsDB protocol. We'll explore the HTTP API in more
detail in Chapter 16.

4. While the client response for procedure_info() might initially seem to
imply that the return value is a thing, it is actually an instance of mpdata,
a specialized data type that represents serialized MessagePack data. To
convert mpdata, you can call the load() method on the mpdata object.
This will effectively de-serialize the MessagePack data and return the
corresponding thing instance.

5. ThingsDB offers two primary authentication methods: token-based and
username/password. ThingsDB provides the new_token() function for
generating secure tokens and the set_password() function for managing
user credentials.

6. The correct answer is RUN.

The QUERY flag enables users to execute queries that retrieve and
process data from ThingsDB. However, the goal is to restrict the
application to executing only pre-defined procedures without
modifying the system state.
The READ flag is not a valid authentication flag in ThingsDB.

94



The CHANGE flag allows users to modify data. Since the goal is to
prevent the application from modifying the state, the CHANGE flag is
not suitable.
The USER constant serves as a convenient shorthand for combining
the commonly used QUERY, CHANGE, JOIN, and RUN permissions into a
single name.

7. In Section 6.2.3, we explored code injection vulnerabilities. If you
executed the code snippet provided in that section, a new property
named .hacked may have been added to the collection. To remove this
unintended property, you can use the following code:
.del("hacked");

95



Chapter 7 - Typed Things
Currently, Alice can add and search for to-do items, but she lacks a
straightforward method to mark them as completed. While we could
implement a procedure to remove completed to-do items, Alice prefers to
retain them for future reference.

To achieve this, we'll transform the current "todo", which is simply a string, into
a thing with both a body property and a boolean property which we call done.
We initially set done to false and update the property to true when the to-do is
marked as completed.

However, using things without proper type constraints can lead to errors due
to incorrect property names or unexpected values. To enhance control and
prevent such issues, we'll explore the concept of types in this chapter. In
practical applications, it is rare to store plain things; instead, we mainly
choose to employ typed things.

Typed things offer significant memory advantages over regular things
with identical properties. This is because typed things in memory only
store the data associated with that particular instance, while the
property names are stored only once, centrally within the type
definition. This centralized storage significantly reduces memory
consumption, particularly for large collections of typed things.

7.1 Create Your First Type
To create a type, you'll need to use the new_type() function to define the type
and the set_type() function to initialize it with property definitions. While it is
technically possible to skip new_type() and call set_type() directly, this
approach may lead to issues with self-referential type definitions. To avoid
potential problems, it is recommended to follow the conventional practice of
using new_type() first, followed by set_type(). Unlike procedures, types can
only be created within a collection's scope.

(//todos)> new_type("Todo");

set_type("Todo", {

body: "str",

done: "bool",

});

null

Both new_type() and set_type() require a type name as their first argument. It
is considered best practice to use CamelCase naming convention for types,

96



starting with a capital letter. The set_type() function takes a second argument,
which is a thing object that defines the properties and their respective
definitions. Property definitions are always expressed as strings.

Once the Todo type is created, you can initialize an instance of it by simply
writing Todo{}. Every type can be initialized without explicitly specifying the
properties. This implies that every property must have a default value at
initialization.

For instance, here's how to initialize a Todo instance using its default values:

(//todos)> Todo{}; // Initialize a Todo using the default values

{

"body": "",

"done": false

}

This creates a new Todo instance with an empty body property and a done
property set to false. As you can see, the default values for body and done are
automatically assigned when the instance is created.

7.1.1 Enhancing the Todo Type using mod_type()

We defined the Todo type to accept empty strings for the body property.
However, this is not ideal, as we want to ensure that to-do's always have a
meaningful description. To address this, we can utilize property definitions to
impose stricter constraints on the body property.

Instead of simply "str", we can specify a range condition using "str<1:>". This
indicates that the body must be at least one character long. We could also
define maximum length restrictions or additional default values if needed.

To modify the Todo type, we'll employ the mod_type() function. This function is
specifically designed for type modification and is commonly used in migration
scripts to streamline data migration processes. It is somewhat analogous to
the ALTER TABLE syntax in SQL, often employed when introducing new features
or enhancing existing applications.

The mod_type() function takes the type name as its first argument, followed by
an action string specifying the desired operation. In this case, we'll use the
"mod" action, which indicates a property definition modification.

Here's a table summarizing the available mod_type() actions:

97



Table 7.1.1 - Summary of mod_type() actions

Action Description

"add" Adds a new property or method to the type

"all" Iterates over all instances of a given type

"del" Deletes a property or method from the type

"hid" Enables or disable hide-id for the type

"mod" Modifies a property or method definition

"rel" Creates a relation between types

"ren" Renames a property or method

"wpo" Enables or disable wrap-only mode for the type

The specific arguments required depend on the chosen action. For "mod", we
need to provide the property name, the new definition, and a migration
callback if the new definition is incompatible with the old one. This is the case
here, as the old definition allowed empty strings, while the new one does not.
The migration callback will be invoked for each instance of the type and
should return either nil to retain the original property value or a new value
that complies with the updated definition.

Now, let's migrate the "todos" collection to utilize the updated Todo type:

(//todos)>

// Migrate existing string values to the Todo type

.todos = .todos.map(|body| Todo{body:});

// Modify the Todo type to disallow empty bodies

mod_type("Todo", "mod", "body", "str<1:>", |todo| !todo.body ? "-" : nil);

// Migrate procedures to ensure compatibility with the updated type

mod_procedure("add_todo", |body| {

"Adds a to-do to the list.";

.todos.push(Todo{body:});

nil;

});

mod_procedure("search_todos", |needle| {

"Search for to-do's";

.todos.filter(|todo| todo.body.contains(needle));

});

null

98



By applying the migration in a single query, we eliminate the risk of using
deprecated procedures or performing operations on incompatible data
structures.

To verify that the migration to the Todo type has been successful, let's execute
the search_todos.py script again:

$ python search_todos.py

Search for: book

[{'#': 2, 'body': 'Read a book', 'done': False}]

7.1.2 Customizing ID Representation in Responses

The previous example demonstrated how to retrieve a list of Todo objects
using the search_todos.py script. The response included the properties of the
Todo type along with the unique identifier for each object, represented by the #
key.

While this approach works, it is possible to gain more control over how IDs
are returned in responses by leveraging type definitions. Specifically, we can
utilize the "#" definition to specify the desired key for the ID.

To achieve this, we'll employ the mod_type() function again. This time, we'll
modify the Todo type to return the ID as "id" instead of "#".

(//todos)> mod_type("Todo", "add", "id", "#");

null

This modification tells ThingsDB to return the unique identifier for each Todo
object as the "id" key in responses.

Now, let's re-execute the search_todos.py script to observe the change:

$ python search_todos.py

Search for: book

[{'id': 2, 'body': 'Read a book', 'done': False}]

As expected, the response now includes the "id" key instead of "#", providing
a more consistent and user-friendly representation of the object identifier.

7.2 Collection Structure with Types
While we've established a well-defined structure for Todo objects, the .todos
list still accepts items of other types, potentially introducing inconsistencies.

99



Additionally, the collection root lacks strict structure, allowing for arbitrary
property assignments.

To address these concerns, we'll create a new type which we call Root to
represent the collection root. The name Root is just a choice, another good
name would be Collection or a more descriptive name like TodoCollection.
This type will solely contain a property named todos with type definition
"[Todo]", ensuring that only Todo objects can be added to the list.

Let's create the Root type:

(//todos)> new_type("Root");

set_type("Root", {

todos: "[Todo]",

});

null

To convert the collection root to the Root type, we'll use the to_type() method.

(//todos)> .to_type("Root");

null

If you encounter an error indicating that the Root type is missing a
property called hacked, it is likely due to the hacked property
introduced in Chapter 6.2.3. To resolve this, remove the hacked
property using .del("hacked");

With the Root type applied to the collection root, we have achieved stronger
type enforcement. Attempts to assign arbitrary properties or add non-Todo
objects to the .todos list will trigger errors.

Here are some examples illustrating this enhanced type safety:

(//todos)> .x = 1;

LookupError: type `Root` has no property `x`

(//todos)> .todos.push(123);

TypeError: type `int` is not allowed in restricted array

(//todos)> type(root());

"Root"

(//todos)> .todos.restriction();

"Todo"

By leveraging typed roots, we've significantly enhanced the structure and type
safety of our collection, promoting data integrity and consistency.

As your application grows and evolves, you may need to adapt your data
structures to accommodate new requirements or enhance existing features.

100



To address such changes, the earlier discussed mod_type() function is
available, enabling you to modify existing types by adding new properties,
changing data types, or introducing restrictions.

If, for any reason, you need to revert a type back to its original "thing" form,
the to_thing() method is your go-to solution. This method effectively de-
structures the typed thing, removing any imposed constraints and allowing for
arbitrary property assignments.

7.3 Retrieving Typed Things by ID
In Chapter 4.2, we learned how to retrieve a specific thing using the thing()
function by providing its ID. This method also applies to typed things, but for
greater control, we can directly invoke the type name and pass the ID as an
argument. This approach ensures that only instances of the specified type are
returned.

Consider the following examples:

(//todos)> Todo(2); // ID 2 is a Todo item

{

"body": "Read a book",

"done": false,

"id": 2

}

(//todos)> Todo(1); // ID 1 is the collection root

TypeError: `#1` is of type `Root`, not `Todo`

In the first example, the Todo(2) call successfully retrieves the Todo object with
ID 2. However, when attempting to access the collection root using Todo(1), an
error is raised because the collection root is a Root object, not a Todo object.

7.4 Type Methods
Up to this point, the Todo type has a property named done to indicate whether a
to-do item is completed. However, if Alice finishes reading a book, she needs
a way to mark the corresponding to-do item as completed. While we could
simply set the done property to true, it is better to adopt a more flexible
approach that allows for potential future changes in data representation.

Type "methods" are self-contained functions within a type definition, allowing
us to encapsulate specific behavior for that type. Instead of directly modifying
the done property, we'll create a method named mark_as_done that handles the
task completion logic.

101



In contrast to properties, which are defined using strings, methods are defined
using closures. These closures encapsulate the method's logic and receive
the this object as their first argument, which represents the instance of the
type where the method is being called on.

We'll use the mod_type() function to add the mark_as_done method to the Todo
type:

(//todos)> mod_type("Todo", "add", "mark_as_done", |this| this.done =

true);

null

Next, we'll create a procedure to interact with the mark_as_done method. This
procedure will receive a todo_id as input and call the mark_as_done method on
the corresponding Todo instance:

(//todos)> new_procedure("mark_as_done", |todo_id| {

wse();

Todo(todo_id).mark_as_done();

nil;

});

"mark_as_done"

Here, we again need to use the wse() function to inform ThingsDB that
this procedure may modify the "todos" collection and potentially trigger
side effects.

To test the new mark_as_done procedure, we'll create a Python file named
mark_as_done.py based on the template and modify the work method to capture
user input for the todo_id and call the procedure:

async def work(client: Client):

todo_id = int(input("To-do ID: "))

await client.run('mark_as_done', todo_id=todo_id)

Running this Python file will prompt you to enter a todo_id, which will then be
used to invoke the mark_as_done procedure.

$ python mark_as_done.py

To-do ID: 2

If no errors occur, it indicates that the operation was successful.

To verify that the to-do item has been marked as completed, you can run the
search_todos.py script again and observe the updated done property:

102



$ python search_todos.py

Search for: book

[{'id': 2, 'body': 'Read a book', 'done': True}]

7.5 Type Information
With the types_info() function, you can explore all the types defined within a
collection. The function returns a list of information objects.

For detailed information about a single type, use the type_info() method. The
Todo type information, for example, would look like this:

(//todos)> type_info("Todo");

{

"created_at": 1706696007,

"fields": [

["id", "#"],

["body", "str<1:>"],

["done", "bool"]

],

"hide_id": false,

"methods": {

"mark_as_done": {

"arguments": ["this"],

"definition": "|this| this.done = true",

"doc": "",

"with_side_effects": true

}

},

"modified_at": 1707128380,

"name": "Todo",

"relations": {},

"type_id": 0,

"wrap_only": false

}

7.6 Removing a Type
ThingsDB empowers you to remove existing types using the del_type()
function. However, exercise caution, as this function operates even when
instances of the targeted type still exist.

Consider the following example:

103



(//todos)> new_type("T"); // Create type T

set_type("T", {name: "str"}); // Define type T

t = T{name: "test"}; // Create an instance of T

assert(type(t) == "T"); // Verify the type

del_type("T"); // Delete type T

assert(type(t) == "thing"); // Verify type is now "thing"

t;

{

"name": "test"

}

As observed, deleting the type converts all existing instances to plain "things",
discarding the specific type information. This transformation is not easily
reversible unless you possess precise knowledge of the original type
belonging to each instance.

7.6.1 Dependency Considerations

Furthermore, attempting to remove a type referenced by another type or
enumerator will fail. To successfully delete such a type, you must first address
the dependencies. Refer to Chapter 9 for in-depth exploration of type
connections and Chapter 11 for detailed discussions on enumerators.

7.7 More Definitions
In this book we'll explore more definitions than discussed so far. We already
used a definition to specify a string with a range, a boolean and a list
restricted to a specific data type.

As always, use the documentation page for a full description of all the type
property definitions which can be found here:
https://docs.thingsdb.io/v1/overview/type/

104

https://docs.thingsdb.io/v1/overview/type/


7.8 Quiz - Challenge Your Understanding
1. Choose which statement declares a new type?

a. del_type("A");

b. new_type("A");

c. mod_type("A");

d. set_type("A");

2. Can you identify which strings fit the property definition "str<4:8>"?
a. "ThingsDB"

b. "Hi"

c. nil

d. "Hello"

e. "Bicycle Race"

3. How can you seamlessly integrate the ID of type T instances as a
property named "identifier" in responses, given that the ID is currently
exposed as "#"?

4. Suppose a type T exposes the ID for each instance as key "identifier"
(see previous question). How can you change the name for this key to
"id"?

5. Complete the set_type("P", ???); statement to create type P, enabling
the following code to function flawlessly:
a = P{x: 3.0, y: 2.0};

b = P{x: 7.0, y: 8.0};

d = a.distance(b); // Should produce 7.211102550927978

Hint: recall the distance formula: √((x₂ - x₁)² + (y₂ - y₁)²)

6. Can you produce a query that returns a list containing only the type
names present in the collection?

7. When a type is removed using del_type(), what happens to existing
instances of that type?

105



7.8.1 Quiz - Answers

1. The correct answer is "b". While set_type() can technically be used to
create a new type, it is primarily used to set the properties and/or
methods for a type. It requires an additional argument, even when not
setting any properties or methods. del_type() is the opposite, it removes
a type instead of creating one. mod_type() is used to modify a type and at
least requires an "action" as second argument.

2. Both "a", "ThingsDB" and "d", "Hello" are valid. The defined range
accepts strings from 4 up till 8 characters, both inclusive. The string
"ThingsDB" contains exactly 8 characters so it is a valid string. Type nil is
not allowed for this definition since only type string is allowed.

3. By executing the following statement:
mod_type("T", "add", "identifier", "#");

4. A type can only have a single "#" definition. By executing the following
statement the key will be renamed from "identifier" to "id".
mod_type("T", "ren", "identifier", "id");

5. To enable distance calculations between points, create type P with the
following masterful definition:
set_type("P", {

  // Properties for point coordinates
  x: "float",
  y: "float",

  // Method for calculating distance:
  distance: |this, other| {
    // Distance formula
    sqrt(pow(other.x - this.x, 2.0) + pow(other.y - this.y, 2.0));
  },
});

6. Use types_info().map(|info| info.load().name); to get a list of type
names. This iterates through type info objects, extracting and returning
only the name property.

7. Instances of the removed type are downcast to regular things. This
means that while their existing properties and values remain intact, the
original type information becomes unavailable.

106



Chapter 8 - Date, Time and Tasks
Effectively managing to-do lists involves not only tracking tasks themselves,
but also the timing of their creation and completion. In this chapter, we delve
into two core methods for capturing time in ThingsDB: timestamps, the
datetime type and the task type used for scheduling code execution.

8.1 Timestamps vs. Datetime
Timestamps represent time as a single numerical value, specifically the
number of seconds elapsed since January 1, 1970, 00:00:00 UTC. This
representation offers compact storage and is suitable for calculations involving
relative time differences.

The now() function retrieves the current timestamp:

(//todos)> now();

1707145945.4736154

While timestamps offer efficient storage and ease of calculating time
differences between events, their single numerical representation can pose
challenges when dealing with absolute dates or time zones. These scenarios
often require intricate calculations to extract the desired information.

ThingsDB simplifies time-related tasks with the datetime type, offering a
human-readable and efficient approach to date and time manipulation.

Unless explicitly overridden with the set_time_zone() function, datetime objects
in ThingsDB default to Coordinated Universal Time (UTC), the global standard
for timekeeping.

Generate a datetime object reflecting the current date and time by simply
calling the datetime() function without arguments:

(//todos)> datetime();

"2024-02-05T15:22:05Z"

The datetime object is returned in a response as a string using the ISO 8601
format.

107



While powerful, datetime objects have limited precision, offering only
up to the second level. If your needs require millisecond-level
accuracy or finer granularity, alternative approaches like timestamps
might be more suitable.

The datetime() function offers a variety of methods to create datetime objects,
ensuring adaptability to diverse data sources and formatting preferences.

Construct datetime objects with year, month, and day:

(//todos)> datetime(2024, 2, 6);

"2024-02-06T00:00:00Z"

Add optional hour, minute, and seconds:

(//todos)> datetime(2024, 2, 6, 9, 57, 30);

"2024-02-06T09:57:30Z"

When the final argument passed to datetime() is a string, ThingsDB interprets
it as a time zone identifier. This allows you to "ground" your datetime object in
a specific geographical location, ensuring accurate representation across
regions:

(//todos)> datetime(2024, 2, 6, 9, 58, "Europe/Kyiv");

"2024-02-06T09:58:00+0200"

In this example, the time zone "Europe/Kyiv" is specified, resulting in a
datetime object reflecting the time in Kyiv, Ukraine. For a comprehensive
overview of all available time zones supported by ThingsDB, use the
time_zones_info() function.

Create datetime objects from ISO 8601 formatted strings:

(//todos)> datetime("2024-02-06T10:05:00Z");

"2024-02-06T10:05:00Z"

Accommodate diverse date and time representations using format specifiers:

(//todos)> datetime("2024-2-6", "%Y-%m-%d");

"2024-02-06T00:00:00Z"

Convert a timestamp to a datetime object and return using a custom format:

(//todos)> datetime(1707211569).format("%a, %d %b %Y %H:%M:%S %Z");

"Tue, 06 Feb 2024 09:26:09 UTC"

108



As illustrated in the provided examples, datetime object initialization in
ThingsDB boasts remarkable flexibility. For a comprehensive overview of
possible initialization options, delve into the detailed online documentation:
https://docs.thingsdb.io/v1/collection-api/datetime/

Once initialized, datetime objects uphold immutability, safeguarding the
integrity of their original data. Consequently, methods like move(), to(), and
replace() always create new datetime objects, leaving the original unaltered.

Need to tweak specific components within a datetime object? The replace()
method is your friend. It allows you to craft new instances with adjusted
values, ensuring pinpoint accuracy:

(//todos)> datetime("2024-02-06T09:26:09Z").replace({

minute: 0,

second: 0,

});

"2024-02-06T09:00:00Z"

Accurate time representation across different regions is crucial. With the to()
method, you can seamlessly apply different time zones to your datetime
objects:

(//todos)> datetime("2024-02-06T09:26:09Z").to("Europe/Kyiv");

"2024-02-06T11:26:09+0200"

Move through time with ease using the move() method. It allows you to
generate new datetime objects adjusted by specified intervals, empowering
you to navigate temporal data efficiently:

(//todos)> datetime("2024-02-06T09:26:09Z").move("years", -1);

"2023-02-06T09:26:09Z"

By mastering these and other methods, you'll unlock a powerful toolkit for
manipulating datetime objects within ThingsDB projects. This ensures
precision and flexibility in managing your time-related data.

8.1.1 Bridging the Gap Between Datetime and
Timestamp

Converting a datetime object to a timestamp can be achieved effortlessly by
casting it as an integer.

(//todos)> int(datetime("2024-02-06T09:26:09Z"));

1707211569

109

https://docs.thingsdb.io/v1/collection-api/datetime/


ThingsDB also offers a data type called timeval. While functionally equivalent
to datetime, it has a key difference: instead of returning an ISO 8601
formatted string, timeval returns a raw UTC timestamp integer in its
responses. Think of it as a more compact and optimized version of datetime
for timestamp-related tasks.

(//todos)> timeval("2024-02-06T09:26:09Z");

1707211569

8.2 Enhancing Todo with Datetime Properties
Now that you've grasped the power of datetime for representing and
manipulating temporal data, let's apply this knowledge to enhance our
understanding of the Todo type in ThingsDB. We'll focus on adding two useful
properties: creation and completion.

We want to keep track of when each Todo item was created. To achieve this,
we'll add a new property named creation with the datetime type:

(//todos)> mod_type("Todo", "add", "creation", "datetime");

null

This command seamlessly integrates the creation property into the Todo type.
However, since we do not possess historical data about the exact creation
dates of existing to-do's, the system automatically assigns the current date
and time to them. This ensures consistency while acknowledging the
limitations of our historical data.

Next, we want to record the moment when a Todo item is marked as
completed. But here's a twist: not all to-do's might be completed yet. For this,
we'll introduce a property named completion, but with the "datetime?"
definition. The question mark (?) signifies that this property is optional,
allowing it to hold either a datetime value (representing the completion time)
or nil (indicating no completion yet).

Here's the command to add the completion property:

110



(//todos)>

// Adds the completion property

mod_type("Todo", "add", "completion", "datetime?", |this| {

this.done ? datetime() : nil;

});

// Fix the mark_as_done method

mod_type("Todo", "mod", "mark_as_done", |this| {

this.done = true;

this.completion = datetime();

});

null

This code snippet does more than simply adding the property. It also defines a
closure to initialize the completion value appropriately for existing to-do's and it
also fixes the mark_as_done method to set the completion value after the to-do
will be marked as done.

8.3 Scheduling Code Execution with Tasks
Tasks allow you to schedule code execution at specific dates and times.

Key features of the task type:

Guaranteed consistency: ThingsDB ensures that each task runs on
exactly one node, preventing data conflicts and maintaining data integrity
across the system.
User context execution: Tasks execute within the context of the user
who created them, inheriting their permissions and ensuring appropriate
access control. However, you can change the task owner using the
set_owner() method, granting ownership and associated permissions to a
different user.
Automatic node distribution: No need to worry about task allocation!
ThingsDB takes care of distributing tasks across available nodes.

Let's explore what happens when we create tasks in ThingsDB:

(//todos)> task(datetime(), || nil);

"<task:4 owner:admin run_at:2024-02-07T14:49:36Z status:nil>"

This task is scheduled for immediate execution as datetime() specifies the
current date and time. It doesn't perform any actions (|| nil) but serves as an
example of task creation.

(//todos)> task(datetime(), || 1/0);

"<task:5 owner:admin run_at:2024-02-07T14:49:50Z status:nil>"

111



This task attempts to perform a division by zero, which will result in an error
when executed. It is useful for demonstrating how ThingsDB handles task
errors.

(//todos)> task(datetime().move("days", 1), || nil);

"<task:6 owner:admin run_at:2024-02-08T14:50:01Z status:nil>"

This task is scheduled to run a day later using datetime().move("days", 1),
showcasing how to schedule actions for specific future moments.

Use the tasks() function to view all tasks within the current scope:

(//todos)> tasks();

[

"<task:5 owner:admin run_at:nil status:err>",

"<task:6 owner:admin run_at:2024-02-08T14:50:01Z status:nil>"

]

Note that successfully completed tasks are removed from the list, while those
with errors and pending tasks remain.

Task with ID 5 has encountered an error, preventing its successful completion.
To uncover the cause of the problem, we'll utilize the err() method:

(//todos)> task(5).err();

"division or modulo by zero"

8.3.1 Cancel or Delete a Task

There are two ways to stop tasks from running. Using the cancel() method
preserves the task information for later use and marks it with a cancelled_err
while the del() method permanently removes it.

The code below illustrates the use of both methods:

(//todos)> task(6).cancel(); // Cancel task with ID 6

null

(//todos)> task(6).err(); // Observe cancelled error

"operation is cancelled before completion"

(//todos)> task(6).del(); // Delete task

null

(//todos)> task(6); // Attempt to access task with ID 6 (now deleted)

LookupError: task with id 6 not found

112



8.3.2 Repeating Tasks

Incorporating again_in() within your task's code allows you to reschedule its
execution based on desired time units and values. It acts like a built-in
calendar reminder, prompting the task to reactivate itself after a defined
period.

Let's illustrate this with an example: Alice needs a daily reminder to send
reports to Bob. She can achieve this with a single task coded as follows:

(//todos)> task(datetime(), |task, body| {

task.again_in("days", 1); // Reschedule the task in 1 day

add_todo(body); // Add the "Send report to Bob" to-do

}, ["Send report to Bob"]);

"<task:7 owner:admin run_at:2024-02-07T14:52:25Z status:nil>"

In this code, the task immediately executes using datetime(). Within the
closure, task.again_in("days", 1) reschedules it to run again in one day. The
task then adds a to-do with the message "Send report to Bob".

But what if you need to modify the report content later? No worries! The task
type offers the set_args() method, enabling you to dynamically change task
arguments without recreating the entire task.

While again_in() offers convenient rescheduling relative to the original task
time, the task type also provides again_at() for pinpoint accuracy in setting
future execution.

Choosing the right method:

again_in():

Reschedules a task relative to its original execution time.
Is ideal for creating repeating tasks at specific intervals (e.g., daily,
hourly).
Example: task.again_in("days", 1) reschedules the task to run in 1
day.

again_at():

Reschedules a task to a specific new date and time.
Is useful for one-time adjustments or scheduling tasks for future
deadlines.
Example: task.again_at(datetime(2024, 02, 09, 10, 00)) reschedules
the task for February 9th, 2024, at 10:00 AM.

8.3.3 Status for Repeating Task

113



As we explored, completed tasks vanished from the ThingsDB list, leaving no
trace of their successful execution. But what about repeating tasks? How do
we track their progress and ensure they are functioning smoothly?

A successfully completed run of a repeating task changes its status from "nil"
to "ok" indicating a successful execution. You can check this status using the
task() function, providing the task ID of your repeating task:

(//todos)> task(7);

"<task:7 owner:admin run_at:2024-02-08T14:52:25Z status:ok>"

This example shows that the task with ID 9, scheduled to repeat on February
8th, 2024, at 2:52 PM UTC, has successfully completed its previous run.

If you need to check the task status in code, use the err() method. This
reveals any errors encountered during the last execution.

(//todos)> task(7).err();

null

If everything went well, the output will be nil, indicating no errors.

8.3.4 Deleting All Tasks with a Single Statement

Before starting the quiz, let's clean up the tasks we created during this
chapter. Can you guess how to delete all of them at once?

Indeed! The following code snippet achieves this efficiently:

(//todos)> tasks().each(|task| task.del());

null

This expression iterates through every task using tasks(), and for each task, it
calls the del() method to permanently remove it.

To verify, you can check the list again:

(//todos)> tasks();

[]

As you can see, the list is now empty, indicating all tasks have been
successfully deleted.

8.4 Farewell, done Property

114



Remember the done property for marking completed to-do's? We can actually
remove it! The completion property serves this purpose perfectly.

Here's how we clean up the data model:

(//todos)>

// Remove the done property

mod_type("Todo", "del", "done");

// Update the mark_as_done method

mod_type("Todo", "mod", "mark_as_done", |this| {

this.completion = datetime();

});

null

This updated method only sets the completion property to the current date and
time, indicating the to-do is complete.

115



8.5 Quiz - Challenge Your Understanding
1. What data type is returned by the now() function, and what does it

represent?

2. How would you calculate the timestamp for January 25, 2025, at 13:05
Kyiv time, considering time zone differences and potential daylight
saving time adjustments?

3. Remember the range definition from the previous chapter? Consider the
property definition "int<-1:1>?". What range of values would be allowed
for this property?

4. You have a task that you no longer want to execute, but you still want to
keep it for reference. How can you achieve this without permanently
removing the task from the task list?

5. Which of the following will create a daily repeating task?
a. task(datetime(), |task| nil).repeat("daily");

b. task(datetime(), |task| task.again_in("days", 1));

c. task(datetime(), |task| task.again_at(datetime(2025, 1, 1)));

6. Write a single line of code that evaluates all tasks and returns true only if
all tasks are in a non-error state. If at least one task is in an error state,
the code should return false.

7. Which of the following statements is true?
a. The datetime type has millisecond precision.
b. The datetime type is mutable, allowing changes like time zone

adjustment.
c. The datetime and timeval types represent the same information but

differ in response format.
d. The timeval type represents a timestamp, while the datetime type

can be zone-aware.

116



8.5.1 Quiz - Answers

1. The now() function returns a floating-point number representing the
current time as the number of seconds since the Unix epoch (January 1,
1970, 00:00:00 UTC).

2. The code timeval(2025, 1, 25, 13, 5, "Europe/Kyiv"); constructs a
datetime object representing the specified date and time in the
Europe/Kyiv time zone and directly returns a UNIX timestamp in the
response. This differs from the datetime() function, which returns an ISO
8601 formatted string representation of the datetime object. To obtain a
UNIX timestamp from a datetime object you can convert the datetime
object to an integer using the int() function.

3. The property definition "int<-1:1>?" allows integer values from -1 to 1,
inclusive. The question mark (?) denotes that the property can also be
left nil. So, valid options are -1, 0, 1 and nil.

4. The cancel() method prevents a task from executing while keeping it in
the list. The task's error state will be set to cancelled_err. This is different
from using the del() method, which completely removes the task from
the list, including its data.

5. Option "b" is the correct approach for creating a daily repeating task. The
again_in() method with a "days" argument allows you to define a relative
delay from the current time. In this case, a recurring delay of 1 day,
effectively scheduling the task to run every day until it is explicitly
canceled. While again_at() can be used, it schedules the task for a
specific time on that date only. Using again_at(datetime(2025, 1, 1))
would run the task once on January 1, 2025, not daily. In fact, if the
current date is past January 1, 2025, it would indeed result in a value_err
("start time out-of-range") error.

6. The following line of code would accomplish this task:
tasks().every(|task| is_nil(task.err()));

The function tasks() returns a list with all tasks and the every() method
on the list iterates through each task and only returns true if the provided
closure evaluates to true for every task. Within the closure,
is_nil(task.err()) checks if the err() method of each task returns with
nil.

7. Statement "c" is correct: datetime and timeval represent the same
information, but differ in response format. The datetime and timeval
types offer only second precision. Both types are immutable, so

117



attempting to change their time zone creates a new object reflecting the
change.

118



Chapter 9 - Two-Way Links
Alice's trusty to-do app has caught Bob's eye, and now it's time to take it
multi-user! Let's dive into how we can transform the app to accommodate
different users and their to-do's.

Let's start with creating a new type called User with properties for their name
and todos:

(//todos)> new_type("User");

set_type("User", {

name: "str",

todos: "{Todo}",

});

null

We're switching from a list to a set for todos. This prepares us for
introducing relations later in the chapter, as relations only work
between sets and plain properties, not lists.

Now comes the migration magic! Though slightly longer than previous code,
keep in mind this single query transforms the entire collection from single-user
to multi-user. It seamlessly adds users for Alice and Bob, migrates Alice's
existing to-do's, and updates all procedures to function with the new setup.

119



(//todos)>

// Add user lookup

mod_type("Root", "add", "users", "thing<User>");

// Add procedure for adding a user

new_procedure("add_user", |name| {

"Add a new todo user.";

uid = name.lower();

assert(!.users.has(uid));

user = .users[uid] = User{name:,};

user.id();

});

// Add users and migrate Alice's to-do's

user_id = add_user("Alice");

User(user_id).todos |= set(.todos);

add_user("Bob");

// Remove todos from Root

mod_type("Root", "del", "todos");

// Update search_todos

mod_procedure("search_todos", |needle| {

"Search for to-do's";

.users.values().reduce(|total, user| {

total |= user.todos.filter(|todo| todo.body.contains(needle));

total;

}, set());

});

// Update add_todo

mod_procedure("add_todo", |name, body| {

"Adds a to-do to a user's todo list.";

todo = Todo{body:,};

.users[name.lower()].todos.add(todo);

todo.id();

});

null

So far, everything seems familiar. We can easily find a user's to-do's because
they are directly stored under the todos property. But what if we have a
specific to-do? How do we know which user it belongs to without searching
through all users?

This becomes evident when using our existing search_todos.py script:

$ python search_todos.py

Search for: report

[{'id': 8, 'body': 'Send report to Bob', 'creation': '2024-02-

07T14:52:26Z', 'completion': None}]

As you can see, the search does not reveal which user this to-do belongs to.

120



9.1 Introducing Relations
To address the issue described in the previous paragraph, we can add a user
property to the Todo type. However, manually maintaining its accuracy could
be cumbersome. ThingsDB offers a more elegant solution: relations.

Let's add a relation between the Todo and User types using the following code:

(//todos)>

// 1. Add the optional user property to Todo

mod_type("Todo", "add", "user", "User?");

// 2. Create the bidirectional relation

mod_type("Todo", "rel", "user", "todos");

null

Let's break down the key steps:

1. We add a new property named user to the Todo type. This property holds
a reference to a User object, but here is the crucial part: it is nillable
(indicated by the question mark ?). Why is this important? Imagine we
remove a Todo from a user's set. With a nillable property, ThingsDB can
effortlessly set the user property to nil, reflecting the broken relationship.
Without nillable properties, such changes would lead to errors or
inconsistencies.

2. Now comes the magic: creating a bidirectional relationship between Todo
and User. We do this by specifying the user property on the Todo side and
the todos property on the User side. This tells ThingsDB how they're
connected. As a result, you can easily access a user's to-do's through
their todos property and identify the owner of a specific Todo using its user
property.

This relationship can be initiated from either the Todo or User type, both
would yield the same result.

Now that we've built the bridge between Todo and User, let's see if it holds.
Let's use our trusty search_todos.py script:

$ python search_todos.py

Search for: book

[{

'id': 2,

'body': 'Read a book',

'creation': '2024-02-07T14:47:49Z',

'completion': '2024-02-07T14:48:06Z',

'user': {'#': 10}

}]

121



Look! ThingsDB automatically populated the user property for us. But the real
magic happens when we modify this relationship. Imagine changing the
"Read a book" to-do's owner from Alice to Bob. Thanks to the relation, this
change would seamlessly ripple through the system. The to-do automatically
gets removed from Alice's todos set and added to Bob's! This dynamic
behavior ensures your data stays consistent and reflects real-world ownership
of to-do's.

9.2 Exploring More Relations
Our to-do example showcased a one-to-many relationship between a single
property user and a set todos. But ThingsDB's relational power doesn't stop
there! Let's dive into the other types which are briefly described in Table 9.2
below.

Table 9.2 - Relationship Types

Relation Definition Description Example

One-on-One T? <-> T? Type to Type Passport and owner

One-to-Many T? <-> {T} Type to Set User and their to-do's

Many-to-Many {T} <-> {T} Set to Set Users and their friends

Let's take a quick break from our current topic and set up a dedicated space
for exploring the different types of relationships in ThingsDB. Using the
/thingsdb scope, we'll create a new collection called "relations" to use for
upcoming examples.

Here's how we'll do it:

(//todos)> @t

(/t)> new_collection("relations");

"relations"

(/t)> @ //relations

(//relations)>

Now, with the "relations" collection ready and waiting, we can now examine
the different types of relationships available in ThingsDB.

9.2.1 One-on-One Relationship

Imagine a Passport type linked to its owner through a user property. Each
owner can have only one passport, and each passport belongs to exactly one

122



owner. This scenario represents a one-on-one relationship, denoted as T? <->
T? in Table 9.2.

One-on-One relationships in ThingsDB offer flexibility beyond just connecting
different types. You can create a relationship where one instance connects to
exactly one other instance of the same type. This even allows for reflexive
relationships, where an instance connects to itself!

Defining the type Pair to demonstrate this type of relationship:

(//relations)> new_type("Pair");

set_type("Pair", {other: "Pair?"});

// Create a relationship to the same property

mod_type("Pair", "rel", "other", "other");

null

Creating a Pair in action:

(//relations)> .p = Pair{};

.p.other= Pair{};

.p.other.other == .p; // Returns true, confirming the link

true

Building on the idea of self-referencing relationships, let's dive into chain
relationships. These are perfect for modeling parent-child scenarios where
each parent has only one child, and vice versa. Imagine a chain of connected
elements, where each element points to the next one in line.

Creating the Chain Type:

(//relations)> new_type("Chain");

set_type("Chain", {prev: "Chain?", next: "Chain?"});

// Create a relationship between "prev" and "next"

mod_type("Chain", "rel", "prev", "next");

null

Now, let's create some Chain instances and connect them:

(//relations)> .chain = Chain{};

.chain.next = Chain{};

.chain.next.next = Chain{};

.chain.next.next.prev == .chain.next; // Returns true, confirming the link

true

See how each element's next property points to the next one in the chain, and
the last element's prev points back to the second element!

123



9.2.2 Many-to-Many Relationship

Now, consider a social network scenario where users have friends. Adding
Bob as a friend for Alice should automatically make Alice a friend of Bob. This
many-to-many relationship connects two sets.

Let's create a Person type in the //relations scope to model this scenario:

(//relations)> new_type("Person");

set_type("Person", {friends: "{Person}"});

// Define the many-to-many relationship

mod_type("Person", "rel", "friends", "friends");

null

Now, let's see how Thelma and Louise become friends:

(//relations)> .Thelma = Person{}; .Louise = Person{};

.Thelma.friends.add(.Louise); // Thelma adds Louise as a friend

.Louise.friends.has(.Thelma); // Returns true, confirming their friendship

true

By adding Louise to Thelma's friends set, the relationship automatically
applies to Louise's friends set as well, thanks to the defined relationship.

Like other relationship types, many-to-many relationships aren't limited to
connecting instances of the same type. As long as both participating entities
have sets defined with each other's type, you can create a bidirectional
connection. In Table 9.2, we used the notation {T} <-> {T} to represent this
flexibility.

We've explored different relationships in ThingsDB. Now, let's head back to
the //todos collection to continue building our to-do app!

9.3 Creating Relations: A Deeper Look
Adding a relation in ThingsDB might seem like a simple task, but there's more
to it than meets the eye.

In ThingsDB, sets are deliberately chosen for the "many" side of
relationships due to their unique strengths: they naturally avoid order-
related issues when removing things (unlike lists), guarantee
uniqueness (aligned with expected behavior) and offer optimized
performance for managing relations.

124



Before officially establishing a relation, ThingsDB performs a thorough check
to ensure everything is in order. Think of it like a safety net to prevent potential
data conflicts.

These checks are crucial for maintaining data integrity and consistency.
Imagine accidentally creating a relation that would lead to duplicate data or
inconsistent information. By proactively identifying such issues, ThingsDB
safeguards your data and prevents headaches down the line.

Now that we understand the importance of pre-checks, let's remember a key
requirement for relations: they only work with stored data. This means that at
least one of the entities involved in creating a relation (e.g. a Todo and its User)
needs to have an ID assigned by ThingsDB.

Consider this code snippet that tries to create a relation without this
requirement:

(//todos)>

t = Todo{}; // Todo without ID

u = User{}; // User without ID

u.todos.add(t);

TypeError: relations must be created using a property on a stored thing (a

thing with an Id)

In this example, we attempt to link a Todo and a User by adding the Todo object
to the user's todos property. However, the User object lacks an ID, which is
essential for establishing the relation. Remember from Chapter 4.2 that things
only get IDs when they are assigned to a collection.

To correctly create the relation, first assign the User to the collection before
adding the Todo. This will grant them IDs, enabling ThingsDB to establish the
desired connection.

Storing a thing before creating a relation is a fundamental principle in
ThingsDB. While it might seem like an extra step, it often aligns with
the natural flow of data creation. Take the add_todo procedure, for
example. While we did not explicitly mention the rule there, adding the
Todo object to the todos set on the stored user is the correct way to
establish the relation with a User.

9.4 Code Cleanup
Previously, adding to-do's was limited to a specific user. Now, we'll prompt the
user for a name during the process. This information will be passed to the
add_todo procedure, ensuring the to-do gets linked to the correct user.

125



Here's the updated add_todo.py script:

async def work(client: Client):

name = input("Name: ")

todo_body = input("To-do body: ")

todo_id = await client.run('add_todo', name=name, body=todo_body)

print(todo_id);

With the add_todo.py back on track, it's time to test your knowledge with the
quiz! Then, in the next chapter, we'll master controlling ThingsDB responses.

126



9.5 Quiz - Challenge Your Understanding
1. Which of the following are valid relation types which can be handled by

ThingsDB?
a. T? <-> T?
b. T? <-> [T]
c. {T} <-> {T}
d. T? <-> {T}
e. T <-> {T}

2. Can you identify which statement(s) establish a relation between type X
on property one with definition "Y?" and type Y on a property called many
using definition "{X}"?

a. mod_type("X", "rel", "one", "many");

b. mod_type("X", "rel", "many", "one");

c. mod_type("Y", "rel", "one", "many");

d. mod_type("Y", "rel", "many", "one");

3. Imagine we're building a to-do app with users and their tasks. We have a
Todo type and a User type connected by a one-to-many relation on the
user and todos properties. Now, consider the following code:
Todo{user: User(10)};

This code tries to create a new Todo object and assign a User object with
ID 10 to its user property. The User with ID 10 exists, so why would this
code fail? Can you identify the issue and explain why it would not work
in ThingsDB?

4. Remember our to-do app with the Todo and User types linked by a one-to-
many relation? Now, consider the following code snippet:
todo = Todo(2);

user = User(10);

assert(todo.user == user);

user.todos -= set(todo);

todo.user; // ??? what will it be?

Given that this code runs without errors, can you predict what value will
be assigned to todo.user after the final line?

127



9.5.1 Quiz - Answers

1. Valid relation types are "a", "c" and "d".
a. T? <-> T? (One-on-One relation)
b. T? <-> [T] (!!! Invalid - A relation with a "list" is not possible)
c. {T} <-> {T} (Many-to-Many relation)
d. T? <-> {T} (One-to-Many relation)
e. T <-> {T} (!!! Invalid - The property must be marked nillable)

2. The correct statements are "a" and "d". When establishing a relationship,
ThingsDB relies on the third argument to locate the other type based on
the provided property. Subsequently, the fourth argument serves as a
pointer, directing ThingsDB to the target property on that type where the
relationship will be formed.

3. In ThingsDB, establishing a relation between two types relies on stored
data and their associated IDs. In your code, the User object with ID 10
exists, but you are trying to assign it to a new Todo without an ID. The
solution is to use the stored user:
User(10).todos.add(Todo{});

When working with relations in ThingsDB, always keep in mind the
importance of stored data and IDs. Utilize existing objects with IDs to
establish connections.

4. The final value of todo.user in the given code snippet will be nil. The key
lies in the line user.todos -= set(todo). Here, we're using set subtraction
to remove the Todo object from the user.todos set. ThingsDB then
automatically updates the user property of the Todo object to nil,
reflecting the "broken" relationship. This behavior ensures consistency
and eliminates the possibility of orphaned references.

128



Chapter 10 - Control Responses
Remember how search_todos.py returned a Todo instance? While it is
functional, imagine customizing the response to something like this:

{

"id": 2,

"body": "Read a book",

"done": true,

"user": {

"name": "Alice",

}

}

This example showcases the desired structure:

Essential keys like "id" and "body" remain unchanged.
The completion property is replaced with a "done" flag.
User information is simplified, including only the "name".

10.1 The Power of Wrap-Only Types
While code manipulation can achieve this, ThingsDB offers a more efficient
approach: Wrap-Only types. These types act as templates defining how to
present existing data. They can't be directly created, but they can "wrap" other
types, transforming their output.

Let's dive into defining our wrap-only type for to-do's.

(//todos)> new_type("_Todo", true);

"_Todo"

The name we choose for our wrap-only type plays a role. While not strictly
required, many developers adopt the convention of starting it with an
underscore (_Todo in our case). This helps visually distinguish wrap-only types
from regular ones at a glance.

The second boolean argument (true) passed to new_type() serves as a flag,
enabling the "wrap-only" mode for the defined type (_Todo). This signifies that
direct instantiation of instances is prohibited. Instead, its functionality lies in
dynamically transforming existing data structures based on the properties and
computed values specified within its definition.

Having declared our _Todo wrap-only type, we proceed to define its structure
and behavior using set_type():

129



(//todos)> set_type("_Todo", {

id: "#",

body: "any",

done: |this| is_datetime(this.completion),

});

null

Let's dissect the key aspects of our wrap-only type configuration:

id: "#"

This familiar selection directly includes the unique identifier (id) of the
wrapped Todo object in the response.

body: "any"

This indicates we want to incorporate the entire text content of the body
property, regardless of its original data type. To include a property in the
wrapped data, its definition in the wrap-only type must be equal or less
restrictive compared to the original. In this case, "any" covers any possible
data type for the body.

done: |this| is_datetime(this.completion)

This is where things get interesting! We're utilizing a computed property.
This method dynamically examines the completion property of the
wrapped Todo. If it finds a datetime value present, it sets the done flag to
true, otherwise it remains false. This demonstrates the power of
computed properties to not only select specific data but also transform it
based on defined logic, adding new insights to the wrapped
representation.

Fundamental to the design of wrap-only types is the restriction on direct
instance creation. Let's confirm this behavior:

(//todos)> _Todo{};

TypeError: type `_Todo` has wrap-only mode enabled

As expected, attempting to directly create an instance of the _Todo type throws
an error.

To leverage the power of _Todo, we employ the wrap() method, available on
thing objects. Let's see how it works:

(//todos)> Todo(2).wrap("_Todo");

{

"body": "Read a book",

"done": true,

"id": 2

}

130



We've achieved a significant transformation. The wrapped Todo now exhibits
the desired structure, including the calculated done property. However, one
crucial element remains missing - the user information.

To incorporate user information, let's create another wrap-only type specifically
for this purpose:

(//todos)> new_type("_TodoUser", true, true);

"_TodoUser"

The first true argument activates the familiar wrap-only mode functionality.
However, the inclusion of the second true argument introduces a privacy
feature. By specifying this additional flag, we instruct ThingsDB to exclude the
ID property within the response.

We'll keep the _TodoUser type simple, focusing on the essential name property:

(//todos)> set_type("_TodoUser", {name: "str"});

null

Now, let's merge _TodoUser into our _Todo type:

(//todos)> mod_type("_Todo", "add", "user", "&_TodoUser?");

null

Let's delve into the meaning of the "&_TodoUser?" definition assigned to the
user property.

The ? symbol is crucial as it preserves the original nillability "User?" of the user
property. If we omitted the ?, it would remove the nillability flag, making the
definition stricter and preventing the user property to be included in a
response.

The & symbol at the beginning of the "&_TodoUser?" definition is a prefix flag in
ThingsDB. Several such flags exist, each influencing how properties are
returned in a query response. Remember the optional deep value in the return
statement? It is actually rarely needed to define this deep value. The & flag acts
similarly, instructing ThingsDB to directly include the specified property in the
response without manual deep level specification. It effectively maintains the
same deep level as the parent property.

131



Table 10.1 - Summarizing prefix flags

Flag Description

"&" Use parent's deep level

"+" Force the maximum deep level of 126 (127 in parent)

"-" Force deep level of 0 (1 in parent)

"^" Apply NO_IDS return flag

"*" Return enumerator names instead of values

While the ^ flag effectively hides IDs, you might wonder if it is
equivalent to setting the hide-ID flag for the _TodoUser type like we did.
Both achieve the same result here, but with a key difference. The ^
flag applies the NO_IDS restriction recursively, anonymizing IDs
throughout nested user data. In contrast, hide-ID only affects the
_TodoUser type itself, potentially exposing IDs in nested objects.

Now that we've incorporated the user property, let's witness the magic!

(//todos)> Todo(2).wrap("_Todo");

{

"id": 2,

"body": "Read a book",

"done": true,

"user": {

"name": "Alice"

}

}

This output aligns perfectly with our desired format!

No need for a return statement or manual deep level specification! Our wrap-
only types seamlessly weave together to-do information and the user's name,
presenting a cohesive response in the desired format.

10.2 Update Search Todos
Now that we have a robust wrap-only type for to-do's, let's adapt the
search_todos procedure to leverage its functionality.

Initially, we could employ the familiar map() method to wrap each filtered Todo
instance:

132



.users.values().reduce(|total, user| {

total |= user.todos.filter(|todo| todo.body.contains(needle));

total;

}, set()).map(|todo| todo.wrap("_Todo"));

However, ThingsDB offers a dedicated and more efficient option specifically
designed for this common wrapping scenario: the map_wrap() method.

Update the the search_todos procedure by incorporating the map_wrap()
method:

(//todos)> mod_procedure("search_todos", |needle| {

"Search for to-do's";

.users.values().reduce(|total, user| {

total |= user.todos.filter(|todo| todo.body.contains(needle));

total;

}, set()).map_wrap("_Todo"); // map_wrap() for efficient conversion

});

null

To confirm the successful integration of the Todo type, let's re-run the
search_todos.py script:

$ python search_todos.py

Search for: book

[{'id': 2, 'body': 'Read a book', 'user': {'name': 'Alice'}, 'done': True}]

As expected, the output now reflects the desired structure, incorporating the
to-do details and user information within the expected format.

10.3 Wrap Every-Thing
In this chapter, we crafted the _Todo wrap-only type, but did you notice a key
detail? We never explicitly specified the target type for wrapping. That's
because wrap-only types possess remarkable versatility! Any thing, any
instance, can be wrapped using _Todo, regardless of its original definition.

Let's observe what happens when we wrap an empty thing:

(//todos)> {}.wrap("_Todo");

{

"done": "thing `#0` has no property `completion`"

}

While not ideal, the result is understandable. The computed done property
returns an error message as the wrapped thing lacks the required completion
property.

133



Now, let's try wrapping an object with some properties:

(//todos)> {completion: nil, body: 123, smile: true}.wrap("_Todo");

{

"body": 123,

"done": false

}

As expected, the done property is calculated correctly based on the provided
completion property. Remember, the body property in _Todo is defined as "any",
allowing it to accept various data types like integers here. Since smile is not
defined in _Todo, it is simply ignored.

While ThingsDB can wrap even plain things, it is worth noting that
wrapping typed things offers a significant performance advantage.
This is due to an internal optimization mechanism: The first time a
typed thing is wrapped, ThingsDB creates a mapping table. This table
efficiently stores how each property in the typed object maps to the
corresponding property in the wrap-only type. For subsequent wraps
of the same type, ThingsDB can leverage this pre-calculated table,
drastically reducing computation overhead. This optimization excludes
computed properties, which inherently require dynamic evaluation.

10.4 Modifying Wrap-Only and Hide-ID Flags
In this chapter, we've explored creating wrap-only types and defining hide-ID
behavior. While we covered the standard approach, you might be wondering
what happens if you forget to set these flags initially?

The mod_type() function provides two key actions for modifying these
configurations after creation: "wpo" for managing wrap-only mode and "hid" for
controlling hide-ID behavior.

The following code demonstrates how to apply these actions in practice:

(//todos)> mod_type("_Todo", "wpo", true);

null

(//todos)> mod_type("_TodoUser", "hid", true);

null

Enabling wrap-only mode for an existing type is restricted to when no
instances of that type currently exist. Attempting to activate it with existing
instances will result in an error.

We trust you've gained a solid grasp of the transformative potential of wrap-
only types. By leveraging them effectively, you can streamline your code,

134



eliminating custom deep levels within return statements and achieving your
desired data structures effortlessly.

We wish you the best of luck with the quiz! In the next chapter, we'll delve into
the exciting world of implementing flags and enumerators, further expanding
your data manipulation capabilities within ThingsDB.

135



10.5 Quiz - Challenge Your Understanding
1. Both type A and B have an email property. On type A the property is

defined as "email?". In which scenario will the email property appear in
the response when an instance of type A is wrapped with type B?

Choose the correct definition(s) for the email property in type B:
a. "any"

b. "str"

c. "str?

d. "email"

2. Consider the following code snippet:
new_type("T", true, true);

What do the two boolean arguments in the provided new_type() function
call signify?

a. The first true activates wrap-only mode, the second activates the
hide-ID flag.

b. The first true activates wrap-only mode, the second activates the
show-ID flag.

c. The first true activates the hide-ID flag, the second activates wrap-
only mode.

d. The first true activates the show-ID flag, the second activates
wrap-only mode.

3. Wrap-only types empower you to define properties or methods. What
purpose do methods serve in this context?

4. Imagine you have a variable people holding a list of things of type Person.
Your task is to return this list with each Person instance transformed and
represented using the _Person wrap-only type. Write the most concise
and efficient statement possible to achieve this transformation.

5. Imagine you're creating a wrap-only type to transform existing instances
of the Person type. Which of the following names are valid for your new
wrap-only type?

a. Beer

b. _Person

c. person

d. _PersonCompact

e. all of the above

6. What happens when a computed property encounters an error during its
calculation? Choose the correct answer:

136



a. It throws an exception that needs to be handled elsewhere.
b. It silently returns a default value like nil.
c. It adds the property with a string value containing the error

message.
d. It continues with the calculation, potentially leading to unexpected

results.

137



10.5.1 Quiz - Answers

1. Both "str?" and "any" can inherit the email property due to their less
restrictive nature compared to the original "email?" definition. This
follows the principle of compatibility where definitions should be either
the same or less restrictive for properties to appear. While "str" enforces
string type, it loses the nillability aspect from the original. On the other
hand, "any" allows any type, including nil, effectively inheriting the
nillability due to its broadness.

2. Answer "a". The first true enables wrap-only mode, and the second true
activates the hide-ID flag. Both arguments default to false if omitted.

3. Methods in wrap-only types define computed properties: properties
whose values are dynamically calculated on response creation.

4. The most efficient way to achieve this transformation is using the built-in
map_wrap() method. Simply calling people.map_wrap("_Person"); will wrap
each Person object in the list with the _Person type. While other methods
like map() can also be used, map_wrap() offers the most concise and
efficient solution in this case.

5. All the proposed names technically work. However, best practices favor
naming conventions for clarity and consistency. Options like _Person or
the more descriptive name _PersonCompact using the underscore prefix
instantly reveal the wrap-only purpose, enhancing code understanding
and avoiding confusion.

6. The correct answer is "c". ThingsDB handles errors in computed
properties gracefully by incorporating the error message itself as the
property's string value within the result. This approach ensures visibility
of any issues that may arise during calculation, promoting transparency
and facilitating troubleshooting.

138



Chapter 11 - Flags, Enumerators and
Regex
This chapter equips you with more powerful tools to manage data efficiently in
ThingsDB: bitwise flags, regular expressions and enumerators. Let's jump
right in with enumerators!

Consider a severity property for your to-do items. An enumerator allows you
to establish a finite list of valid options, such as "Low", "Medium", and "High".
This enforces data integrity by ensuring only permitted values are assigned,
preventing inconsistencies or invalid entries

11.1 Crafting Your First Enumerator
Unlike conventional data types, enumerators in ThingsDB are created directly
using the set_enum() function. Here's the code to define the Severity
enumerator for our to-do application:

(//todos)> set_enum("Severity", {

Low: 0,

Medium: 1,

High: 2,

// Optional method for customized string representation

str: |this| `{this.name()} ({this.value()})`,

});

null

Key Technical Properties:

Supported Data Types: Enumerators can accommodate integers, floats,
strings, bytes, and things. Other types like sets, lists, and tasks are not
supported.
Unique Value Requirement: Each value within an enumerator must be
distinct.
Mutable Object Handling: Things, being mutable, can have identical
content within an enumerator as long as they reference different objects.
Method Inclusion: Enumerators can also house methods, like the str()
method in our example, used for custom string formatting.
Member Rules: At least one member is mandatory, and all members
must share the same data type (e.g., all integers). Mixing types like
integers and floats is not allowed.

11.1.1 Setting the Default Member of an Enumerator

139



Like other ThingsDB elements, enumerators possess default members. To
avoid unexpected behavior, it is highly recommended to explicitly define these
defaults using the mod_enum() function. Here's how to set Medium as the default
member for the Severity enumerator:

(//todos)> mod_enum("Severity", "def", "Medium");

null

To verify that the default member is correctly configured, simply call the
Severity enumerator without providing a specific value to get the default
member:

(//todos)> Severity();

1

As demonstrated, when a member is returned in a response, its underlying
value is displayed by default. In this case, 1 (representing Medium) is returned.

11.1.2 Working with Enumerator Methods

Each enumerator member in ThingsDB offers two built-in methods: name() and
value(). These methods provide programmatic access to the enumerator's
name and value, respectively. Additionally, any custom methods defined within
the enumerator become available to its members.

Let's delve into practical examples using the Severity enumerator we defined
earlier:

(//todos)> Severity().name();

"Medium"

(//todos)> Severity().value();

1

As expected, name() returns the string "Medium", while value() retrieves the
corresponding value, 1.

Remember the optional str() method we defined for formatting? We can
access it through a member:

(//todos)> Severity().str();

"Medium (1)"

This demonstrates how custom methods enhance the functionality of
enumerator members.

140



11.1.3 Retrieving Enumerator Members

Need a member with a specific value? Simply pass the value directly to the
enumerator constructor:

(//todos)> Severity(2).name(); // Value 2 for High

"High"

This straightforward approach is ideal when the value is readily available.

Know the enumerator name beforehand? Use static access with curly braces:

(//todos)> Severity{High}.str();

"High (2)"

This method is useful when the name is known and fixed.

Working with dynamic names stored in variables? Employ a closure within
curly braces:

(//todos)> name = "High"; Severity{||name};

2

While the example might seem unusual, the name variable is simply for
demonstration. In practice, you might receive it as an input argument or
retrieve it dynamically. This method ensures security against code injection
vulnerabilities, as described in Chapter 6.2.3.

11.1.4 Enumerator Validation

When you attempt to access an enumerator using an invalid value or name, it
raises an error instead of silently continuing. This prevents unexpected
behavior and ensures data accuracy.

Here's what happens when you try to use non-existent values or names:

(//todos)> Severity(9);

LookupError: enum `Severity` has no member with value 9

(//todos)> Severity{Insane};

LookupError: enum `Severity` has no member `Insane`

(//todos)> Severity{||"NotAtAll"};

LookupError: enum `Severity` has no member `NotAtAll`

As you can see, ThingsDB throws a lookup_err in all cases, clearly indicating
the invalid input.

141



11.2 Enumerator Information
ThingsDB offers enums_info() to explore all defined enumerators within a
collection, returning a list of information objects. Each object encapsulates
details like its name, members, and methods.

For a specific enumerator, use enum_info(), which retrieves a single
information object. Remember that information methods like enum_info() return
"mpdata" requiring further processing. Utilize the load() method to convert it
into a usable structure where you can extract individual properties.

For instance, verifying the default member of the Severity enumerator
involves:

(//todos)> enum_info("Severity").load().default;

"Medium"

This code retrieves the Severity information object, loads it, and extracts the
default property, revealing the default member: "Medium".

11.2.1 Enumerator Members

Accessing an enumerator's member can be valuable for integrating with other
platforms or systems. Ideally, we want these members readily available as a
single "thing" for simpler handling.

While enum_info() exposes members, processing them requires code to
convert the returned list of tuples into a desired format. Here's an example
using reduce():

(//todos)> enum_info("Severity").load().members.reduce(

|t, m| {t.set(m[0], m[1]); t;},

{}

);

{"Low": 0, "Medium": 1, "High": 2}

As you can see, this approach involves several steps and can be
cumbersome.

Fortunately, ThingsDB provides a built-in solution: enum_map(). This function
directly returns the enumerator members as a convenient "thing":

(//todos)> enum_map("Severity");

{"Low": 0, "Medium": 1, "High": 2}

142



11.3 Modifying Enumerators
Need to modify an existing enumerator after its creation? Don't worry, the
mod_enum() function comes to the rescue! We previously saw it in action for
setting the default member. But its power extends beyond that. It offers a
versatile suite of actions to tailor your enumerators to your evolving needs.

Here's a quick reference table summarizing the available actions:

Table 11.3 - Summary of mod_enum() actions

Action Description

"add" Adds a new member or method to the enumerator

"def" Sets the default member for the enumerator

"del" Deletes a member or method from the enumerator

"mod" Modifies a member value or method closure

"ren" Renames a member or method

11.4 Implementation and Other Enumerator
Solutions
While we've created a custom Severity enumerator, ThingsDB offers other
built-in solutions for common purposes. Let's briefly compare these options
before proceeding.

11.4.1 Revisiting Range Definitions
Recall that ThingsDB empowers you with precise control over integer values
using range definitions. Let's revisit how to implement this for the severity
property within the Todo type:

(//todos)> mod_type("Todo", "add", "severity", "int<0:2:1>");

null

This code snippet concisely bolsters data integrity within the Todo type by
introducing the severity property. This new property restricts values to
integers within the strict 0-2 range, effectively preventing invalid input.
Furthermore, a default value of 1 is established, ensuring a meaningful

143



starting point for both existing and new instances. Notably, this constraint is
retroactively applied to all existing Todo instances, guaranteeing data integrity
throughout the entire dataset.

Let's demonstrate the default value and error handling of the severity
property:

Creating a Todo instance without specifying severity assigns the default value:

(//todos)> Todo{}.severity;

1

Attempting to create a Todo with an invalid severity triggers an error:

(//todos)> Todo{severity: 99};

ValueError: mismatch in type `Todo`; property `severity` requires an

integer value between 0 and 2 (both inclusive)

11.4.2 Regular Expressions using Regex

While enumerators offer a structured and type-safe approach to defining value
sets, you can also achieve similar results using regular expressions.
ThingsDB supports regular expressions through the "regex" data type.

Here's how to write a regular expression in ThingsDB:

/pattern/flags

Regular expressions in ThingsDB go beyond just validating strings. They act
as powerful tools for various string manipulation tasks. By using string
methods like replace() and split(), you can transform and extract portions of
strings based on defined patterns.

A key method for pattern matching is the regex method test(), which returns
true if a given string matches the pattern, and false otherwise.

Let's see the test() method in action:

(//todos)> /^(Low|Medium|High)$/.test("Low");

true

(//todos)> /^(Low|Medium|High)$/.test("MEDIUM");

false

(//todos)> /^(Low|Medium|High)$/i.test("LOW"); // Case-insensitive matching

true

144



While crafting regular expressions is beyond this book's scope, let's briefly
break down the pattern used in the example:

^: Matches the beginning of the string.
(Low|Medium|High): Matches one of the listed options ("Low", "Medium", or
"High").
$: Matches the end of the string.
i flag: Enables case-insensitive matching.

Leveraging the understanding of regular expressions, let's define the severity
property using a pattern-based approach. Remember, definitions in ThingsDB
are always strings. We encapsulate the regular expression within quotes and
specify a default value. Crucially, this default value must strictly adhere to the
defined pattern for successful definition acceptance.

(//todos)> mod_type(

"Todo",

"mod",

"severity",

"/^(Low|Medium|High)$/<Medium>",

|this| ["Low", "Medium", "High"][this.severity],

);

null

Key Points:

1. Regex Definition: The code snippet utilizes a regex string
(/^(Low|Medium|High)$/) to constrain valid severity values to "Low",
"Medium", or "High".

2. Default Value: The <Medium> suffix sets the default value to "Medium".
Remember, default values must adhere to the defined pattern for
acceptance.

3. Migration Closure: This scenario necessitates a migration closure due
to the incompatibility of the new regex with the previous integer range.

4. Closure Functionality: The provided closure maps existing integer
severity values (0, 1, 2) to their corresponding string equivalents ("Low",
"Medium", "High").

Let's validate the default value and constraint for the string-based severity
property:

Creating a new Todo without specifying severity assigns the default value:

(//todos)> Todo{}.severity;

"Medium"

Attempting to create a Todo with an invalid severity triggers an error:

145



(//todos)> Todo{severity: "Unknown"};

ValueError: mismatch in type `Todo`; property `severity` has a requirement

to match pattern /^(Low|Medium|High)$/

11.4.3 Transitioning to the Enumerator

Having explored both integer range and string-based solutions, let's migrate
the severity property to leverage our custom Severity enumerator:

(//todos)> mod_type(

"Todo",

"mod",

"severity",

"Severity",

|this| Severity{||this.severity},

);

"Medium"

As before, a migration closure is necessary due to the change in data
representation. This closure translates existing string values ("Low", "Medium",
"High") to their corresponding enumerator members (Severity{Low},
Severity{Medium}, Severity{High}).

To confirm successful migration, let's create a new Todo with default severity:

(//todos)> Todo{}.severity.str();

"Medium (1)"

Excellent! We can now leverage the str() method we defined, indicating that
the severity property is now strictly bound to the enumerator's members.

11.4.4 Wrap-Only Types with Enumerators

We can further elevate the _Todo wrap-only type by incorporating the severity
property. Additionally, ThingsDB offers the optional * prefix flag to specify
returning the enumerator member's name instead of its value. Let's
demonstrate this in action:

(//todos)> mod_type("_Todo", "add", "severity", "*Severity");

null

Now, let's test this modification on an empty Todo:

146



(//todos)> Todo{}.wrap("_Todo");

{

"body": "-",

"done": false,

"severity": "Medium",

"user": null

}

As you can see, the severity property now displays the member name
"Medium" instead of its numerical value (1).

11.5 Understanding Flags
Before we proceed with the quiz, let's explore a use case for flags in
ThingsDB.

Flags are a data structure used internally by ThingsDB and many
other software to efficiently store access rights and other bitwise
information. Recall how we granted the RUN and CHANGE access flags to
our "py" user. These flags represent individual bits, specifically 16
(10000) for RUN and 2 (00010) for CHANGE. By granting both, we effectively
stored the value 18 (10010) within a single integer property. Leveraging
64-bit integers, ThingsDB empowers you to store up to 64 flags within
a single property, promoting data density and efficiency.

11.5.1 Using Enumerators to Store Flags

Before utilizing flags, we need to establish them within your ThingsDB project.
Enumerators provide a convenient and safe approach for this task.

While it may seem unrelated to our to-do app, let's imagine Alice and Bob,
with no more tasks remaining, decide to play cards. We'll create a Suits
enumerator to represent the four card suits:

(//todos)> set_enum("Suits", {

Spades:   1<<0, // 0b0001 (1)

Clubs:    1<<1, // 0b0010 (2)

Diamonds: 1<<2, // 0b0100 (4)

Hearts:   1<<3, // 0b1000 (8)

});

null

We've used the bitwise left shift operator (<<) to assign values to each suit.
While not mandatory, this approach helps prevent errors during flag definition,
as it leverages the inherent binary representation of integers. Using simple

147



numbers (1, 2, 4, 8) would also work, but bit shifting offers additional safety
and clarity.

11.5.2 Working with Flags

Now that our Suits enumerator is defined, let's delve into how to use these
flags effectively in your code.

While this section delves into using flags in ThingsDB, the underlying
bitwise operations are similar to those found in most programming
languages. If you are comfortable with bitwise operators like << and &,
you may find this section reinforces general concepts rather than
ThingsDB-specific details.

Bitwise OR (|) Operator: Combines multiple flags into a single variable:

(//todos)> // Sets both Spades and Hearts flags

my_suits = Suits{Spades}.value() | Suits{Hearts}.value();

9

Bitwise OR-Equals (|=) Operator: Adds a flag to an existing value:

(//todos)>

my_suits = Suits{Spades}.value(); // Initially set Spades flag

my_suits |= Suits{Hearts}.value(); // Adds Hearts flag

9

Bitwise AND (&) Operator: Checks if a specific flag is present:

(//todos)> my_suits = Suits{Spades}.value() | Suits{Hearts}.value();

// Test for Hearts flag

assert(bool(my_suits & Suits{Hearts}.value()) == true);

// Test for Diamonds flag

assert(bool(my_suits & Suits{Diamonds}.value()) == false);

null

Bitwise NOT (~) Operator: Inverts all bits in a value, effectively removing a
specific flag when combined with bitwise AND:

(//todos)> my_suits = Suits{Spades}.value() | Suits{Hearts}.value();

my_suits &= ~Suits{Hearts}.value(); // Unsets the Hearts flag

1

Bitwise XOR (^) Operator: Flips the bits of a specified flag, switching its state
on or off:

148



(//todos)> my_suits = Suits{Spades}.value() | Suits{Hearts}.value();

my_suits ^= Suits{Hearts}.value(); // Toggles the Hearts flag

my_suits ^= Suits{Diamonds}.value(); // Toggles the Diamonds flag

5

Flags offer a powerful and compact way to store multiple boolean values
within a single integer, enhancing data efficiency and representation. This can
be particularly advantageous for managing access control, permissions, and
various configuration settings.

When integrating ThingsDB with other languages, remember the
enum_map() function. This function helps effortlessly translate between
ThingsDB enumerators and their corresponding values in different
languages, streamlining data exchange and interoperability.

Best of luck with the quiz! In the next chapter, we embark on the exciting
journey of events and rooms in ThingsDB, where you'll explore powerful
mechanisms for real-time communication and data interactions within your
applications.

149



11.6 Quiz - Challenge Your Understanding
1. Select all statements that are true about enumerators:

a. Members of an enumerator must be of the same type.
b. An enumerator is created using the new_enum() function.
c. Members must have unique names, and their values must also be

unique.
d. Enumerators are immutable, meaning you cannot modify members

or methods after creation.

2. While creating an enumerator, why is it recommended to use mod_enum()
at least once?

3. Imagine you have a variable x containing the name of a member within
the Colors enumerator. How would you retrieve the corresponding
member using that variable?

4. What built-in methods are available on every member of an enumerator?

5. What does the * prefix flag signify when used in a type property
definition for an enumerator? Explain its purpose and impact on data
representation.

6. Write a statement using a regular expression that checks if the string
stored in the variable animal matches either "Dog" or "Cat", regardless of
case sensitivity.

7. Which code snippet accurately initializes the Colors enumerator with R, G,
and B members so they can be independently used as distinct flags for
bitwise operations?

a. set_enum("Colors", {R: 0, G: 1, : 2});

b. set_enum("Colors", {R: "#FF0000", G: "#00FF00", B: "#0000FF"});

c. set_enum("Colors", {R: 1, G: 2, : 3});

d. set_enum("Colors", {R: 1<<0, G: 1<<1, : 1<<2});

150



11.6.1 Quiz - Answers

1. The correct choices are "a" and "c". Enumerators enforce strict data type
consistency for their members and require unique names and values.
While new_enum() might seem fitting, remember that ThingsDB uses
set_enum() to create enumerators. Enumerators are mutable, allowing
you to add, rename, delete, and change members and methods using
the mod_enum() function.

2. Setting a default value using mod_enum() is generally recommended for
enumerators, particularly those used within a type to influence its
behavior. While less crucial for enumerators solely used for storing
values like flags, defining a default value through mod_enum() provides
additional control and clarity in various use cases.

3. To dynamically retrieve the Colors member based on the name stored in
x, you can use a closure expression enclosed in curly braces:
Colors{||x};

4. The two basic methods accessible to every enumerator member are:

name(): This method returns the string name of the member as
defined in the enumerator declaration.
value(): This method returns the value associated with the
member.

Remember that enumerators themselves can have additional methods
defined beyond these two, depending on how they were created using
set_enum() or mod_enum().

5. The * prefix flag, when used in a type property definition for an
enumerator, influences the value returned when the instance is wrapped
for the response. It instructs the system to return the name of the
corresponding enumerator member instead of its value.

6. The following regular expression, combined with the test() method, can
be used to check if the variable animal matches either "Dog" or "Cat"
(case-insensitive):
/^(dog|cat)$/i.test(animal);

7. The correct answer is "d":
set_enum("Colors", {R: 1<<0, G: 1<<1, : 1<<2});

This option uses the bitwise left shift operator (<<) to assign distinct
binary values to each member. Answer "a" and "c" are using consecutive
integer values (0, 1, 2) and (1, 2, 3) which do not provide distinct binary

151



representations for bitwise operations. Answer "b" is using string values
for their members, which cannot be used for bitwise operations.

152



Chapter 12 - Real-Time Data Updates with
Events and Rooms
Imagine Alice and Bob want to build a live dashboard displaying the number
of pending to-do's for all users in their to-do application. However, simply
polling the collection every few seconds is inefficient and creates unnecessary
network traffic.

Enter the world of Events and Rooms in ThingsDB!

Remember from Chapter 4.4 how we used log() to emit warning
events to the client? Well, events are a much broader concept in
ThingsDB, acting as messengers carrying information triggered by
various actions. Besides warnings, ThingsDB, for example, also
generates events for node status changes.

12.1 Rooms
This chapter focuses on a specific type of event: those emitted to rooms.

Think of a room as a lightweight, dedicated communication channel within
your collection. Each room receives a unique ID when it is associated with the
collection, similar to individual things.

Creating a room is simple:

(//todos)> room();

"room:nil"

You'll see "room:nil" because no ID has been assigned yet. Assigning the
room to the collection grants it an ID, just like how it works with things.

Since we converted the root of the collection to type Root back in Chapter 7.2,
modifying its structure requires the mod_type() function. We'll add a property
named dashboard of type room to the Root type.

(//todos)> mod_type("Root", "add", "dashboard", "room");

null

153



While assigning a separate room to each Todo might seem intuitive, it
would not be efficient for a comprehensive dashboard that requires an
overall view.

Let's verify if the room was created by accessing the dashboard property:

(//todos)> .dashboard;

"room:12"

You should see a unique room ID like "room:12", indicating a successfully
created room associated with the collection.

We can retrieve the plain ID of the dashboard room using the id() method.
This method comes in handy when we later want to join the room for event
listening.

(//todos)> .dashboard.id();

12

12.1.1 Sending Your First Message via Events

With the "dashboard" room in place, we're ready to emit our first event!

The process is simple: use the emit() method on your room object. The first
argument is the event name, a string between 1 and 255 characters. You can
optionally include additional arguments that will be sent along with the event.

Here's an example of sending a "chat-message" event:

(//todos)> .dashboard.emit("chat-message", "Who's listening???");

null

Remember, no one has joined the room yet. So, while the event was
successfully emitted, no one received the "chat-message".

While we emphasized the event name as the first argument for emit(),
it can also accept an alternative deep value. Optionally, a second
argument allows setting flags like NO_IDS. The actual event name and
accompanying data always follow, regardless of these advanced
options which are hardly ever required.

For example: room.emit(2, NO_IDS, "<EVENT_NAME>", …)

154



12.2 Listen for Events
Just like before, we'll demonstrate using Python to create a listener for the
"dashboard" room. Remember, the concepts are transferable to other
languages like C#, Go, PHP or JavaScript/Node.js with minor adjustments.

Before proceeding, let's create a dedicated user for the dashboard. We can
leverage the same new_todo_user() procedure we established in Chapter 6.4:

(//todos)> @t

(@t)> wse(); new_todo_user("dashboard", JOIN | RUN | QUERY);

"14VdoACr4WydUi/PEi1MV6"

This grants the "dashboard" user:

JOIN: To subscribe to the room and receive events.
QUERY: To retrieve the room ID (needed for joining).
RUN: To execute a future procedure for grabbing the initial state.

12.2.1 Creating Your Dashboard Listener

Save the following code as dashboard.py:

155



import asyncio

from thingsdb.client import Client

from thingsdb.room import Room, event

class Dashboard(Room):

@event("chat-message")

def on_chat_message(self, message):

print(message)

async def main():

client = Client()

client.set_default_scope('//todos')

room = Dashboard("""//ti

.dashboard.id();  // This must return the room ID

""")  # Fetch the dashboard room ID dynamically

await client.connect('localhost')  # Replace with your address/port

try:

# Authenticate with the dashboards user's token

await client.authenticate('14VdoACr4WydUi/PEi1MV6')

await room.join(client)  # Join the dashboard room

await asyncio.Future()  # Run forever

finally:

client.close()

await client.wait_closed()

asyncio.run(main())

Open a terminal and run the script:

$ python dashboard.py

…

If successful, you'll see no immediate output. The listener is now actively
waiting for events in the background.

With the listener running, let's send a test message from the //todos scope:

(//todos)> .dashboard.emit("chat-message", "Hello dear listeners");

null

If everything is set up correctly, you should see the following output in the
terminal running your dashboard.py script:

$ python dashboard.py

Hello dear listeners

…

156



This confirms that your listener successfully received and printed the
message!

12.3 Retrieving Initial Dashboard State
While sending chat messages is fun, our ultimate goal is to create a functional
dashboard. Like many real-world applications, the dashboard needs to fetch
an initial state, in this case, the current number of uncompleted tasks for each
user.

First, we need a way to represent this information. Let's create a new wrap-
only type named _DashboardUser:

(//todos)> new_type("_DashboardUser", true);

"_DashboardUser"

Next, we define the structure of _DashboardUser:

(//todos)> set_type("_DashboardUser", {

id: "#",

name: "str",

count: |this| list(this.todos).count(|todo| is_nil(todo.completion)),

});

null

The _DashboardUser type defines three properties: id to identify a user, name for
retrieving user names and count for calculating uncompleted to-do's using a
computed property.

Finally, we create a procedure named get_dashboard_state that retrieves and
formats the initial data:

(//todos)> new_procedure("get_dashboard_state", || {

.users.values().map_wrap("_DashboardUser");

});

"get_dashboard_state"

Let's check if it works:

(//todos)> get_dashboard_state();

[

{"id": 10, "count": 2, "name": "Alice"},

{"id": 11, "count": 0, "name": "Bob"}

]

This confirms that the procedure successfully retrieves the desired initial
state.

157



12.3.1 Integration of the Initial State

Now that we have the get_dashboard_state procedure, let's integrate it into the
dashboard application:

class Dashboard(Room):

def on_init(self):

# Called only once

self.state = []

async def on_join(self):

# Called when joining the room

self.state = await self.client.run("get_dashboard_state")

self.print_state()

def print_state(self):

print('-' * 20)

for user in self.state:

name, count = user["name"], user["count"]

print(f"{name:<15}{count:>5}")

Initial state in on_init():

The on_init() method, inherited from Room, is called once during room
initialization. We use it to initialize an empty state.

Updating state on join in on_join():

The asynchronous on_join() method, called when joining the room,
retrieves the current state using get_dashboard_state and updates the
state. It then calls print_state to display the information.

Important Note: Unlike on_init(), on_join() can be called multiple
times due to reconnections. This ensures the dashboard retrieves
the latest state after any disruptions.

Custom print_state() method:

This custom method formats and prints the user names and uncompleted
to-do counts from the state.

Running dashboard.py again will now print the state:

$ python dashboard.py

--------------------

Alice              2

Bob                0

158



12.3.2 Implement Event Handlers

Now we need to handle events that indicate changes to the data, ensuring our
dashboard reflects the latest information.

Identifying state-changing procedures and methods:

add_todo: Adds a new task to a user's list.
add_user: Creates a new user.
mark_as_done: Marks a task as completed.

Here's the code to update the procedures and methods:

(//todos)>

mod_procedure("add_todo", |name, body| {

"Adds a to-do to the list.";

todo = Todo{body:,};

.users[name.lower()].todos.add(todo);

.dashboard.emit("add-todo", todo.user.id());  // New line

todo.id();

});

mod_procedure("add_user", |name| {

"Add a new to-do user.";

uid = name.lower();

assert(!.users.has(uid));

user = .users[uid] = User{name:,};

.dashboard.emit("add-user", user.wrap("_DashboardUser"));  // New line

user.id();

});

mod_type("Todo", "mod", "mark_as_done", |this| {

.dashboard.emit("mark-as-done", this.user.id());  // New line

this.completion = datetime();

});

null

Implementing the event handlers in dashboard.py:

159



class Dashboard(Room):

@event("add-todo")

def on_add_todo(self, user_id):

# Update user's to-do count and display updated state

self.get_user(user_id)["count"] += 1

self.print_state()

@event("add-user")

def on_add_user(self, user):

# Add user to state and display updated state

self.state.append(user)

self.print_state()

@event("mark-as-done")

def on_mark_as_done(self, user_id):

# Update user's to-do count and display updated state

self.get_user(user_id)["count"] -= 1

self.print_state()

def get_user(self, user_id):

# Find user object based on ID

for user in self.state:

if user["id"] == user_id:

return user

# ... other methods

12.3.3 Test Your Dashboard in Action!

Restart your dashboard.py script and have some fun:

1. Add new tasks: Create tasks for various users ("Alice", "Bob", or even a
new user like "Charlie"). Observe how the dashboard automatically
updates their to-do counts.

2. Mark tasks done: Mark some tasks as completed and witness the
immediate reflection in the dashboard's user counts.

3. Add new users: Create additional users and see how they're
automatically added to the dashboard.

Example output:

160



$ python dashboard.py

--------------------

Alice              2

Bob                0

--------------------

Alice              2

Bob                1

--------------------

Alice              1

Bob                1

--------------------

Alice              1

Bob                1

Charlie            0

…

As you interact, the dashboard dynamically updates the list, displaying the
latest to-do counts for each user in real-time. This demonstrates the power of
event-driven communication between your application and ThingsDB!

12.4 Room for More
We hope this chapter provided a solid foundation for using events and rooms
in ThingsDB. While it does not cover everything, it equips you to start building
interactive applications.

Expand your knowledge! For deeper insights into rooms and events,
explore the client website specific to your chosen language. This website
likely contains detailed information and examples beyond what is covered
here. Do not miss the Connectors section of this book for quick access to
these valuable resources.

161



12.5 Quiz - Challenge Your Understanding
1. Who will receive the message "Hello World" in the following statement?

room().emit("new-message", "Hello World");

Remember: Rooms must have an ID before they can be joined.

2. What access flag is required for a program to join a room in ThingsDB?
a. QUERY

b. CHANGE

c. RUN

d. JOIN

3. What method is available to get a room ID?

4. What is the most appropriate point to synchronize the state of a Room
with the current state of the collection?

a. on_init(..) (During room initialization)
b. on_join(..) (When joining the room)
c. on_emit(..) (When emitting an event)

5. Which of the following are valid event names?
a. "123"

b. "new-building"

c. "stop the program!"

d. ""

e. "ADD_USER"

6. Consider the following Python code snippet belonging to a Room class
that listens to the .math room:
    @event("add-two-numbers")
    def on_add_two_numbers(self, a, b):
        print(f"{a} + {b} = {a + b}")

The observed output is:
8 + 5 = 13

Can you write the ThingsDB code that could have triggered this event,
resulting in the displayed response?

162



12.5.1 Quiz - Answers

1. No one will receive the message "Hello World" because the statement
lacks a room ID. Rooms require an ID for joining, and without one, a
program cannot join the intended room.

2. The absolute requirement for joining a room in ThingsDB is the JOIN
access flag. While the QUERY flag is not strictly mandatory, it offers
valuable utility. It allows you to retrieve the room ID dynamically using a
query.

3. The id() method is directly available on the room object and returns the
ID as integer. While technically possible, extracting the ID from the string
representation of the room object is less efficient and generally
discouraged. The room object itself returns a string in the format room:ID.

4. Answer "b". The most appropriate point to synchronize the state with the
current collection in a Room implementation is on_join(..). While the
on_init(..) could be used for initial state retrieval, it would not account
for potential changes after a connection loss. The on_join(..) handler is
called every time a room is joined, making it ideal for ensuring the latest
state is retrieved from the collection.

5. All event names are valid except for empty strings (answer "d").
Remember, event names need at least one character and cannot
exceed 255 characters.

6. The following ThingsDB code could have triggered the "add-two-numbers"
event, leading to the observed output:
.math.emit("add-two-numbers", 8, 5);

163



Chapter 13 - Futures and Modules
Ready to push your ThingsDB projects further? This chapter dives into the
world of modules, unlocking a vast array of functionalities to extend your
applications beyond the core features.

Imagine sending automated emails, interacting with external APIs, storing files
in the cloud, or even connecting to other databases – modules make these
and more possible!

But before we explore the exciting world of modules, let's take a quick detour
and understand a key concept: futures in ThingsDB.

By understanding futures, you'll be well-equipped to harness the true power of
modules and unlock the full potential of your ThingsDB projects.

13.1 Demystifying Futures: Waiting with
Purpose
Think of futures as placeholders for tasks running in the background, allowing
your code to continue without getting stuck waiting.

We'll start by creating an "empty future", which doesn't have a specific task
but still waits for a query to complete before executing asynchronously:

(//todos)> future(nil);

[

null

]

This code creates a future without any specific task. It simply waits for the
query to finish and then executes asynchronously. The response you see
([null]) is the result of the future task (which, in this case, is nothing).

13.1.1 Using the Future's Task Result

We have seen how futures hold the place for background tasks. But what if
we want to do something with the result of that task once it is finished? That is
where the then() method comes to the rescue!

Imagine you delegate a task to a friend. When they finish, they share the
result. The then() method acts like your friend, waiting for the future to finish
and then running a closure you provide with the result.

164



Here is an example:

(//todos)> future(nil).then(|result| is_nil(result));

true

As you can see, the query response now shows the outcome of the closure
(true in this case).

The closure provided to the then() method operates in a separate context
than your main code. It cannot directly access variables defined outside, like
in this example:

(//todos)>

x = 10;

future(nil).then(|| x + 10);

LookupError: variable `x` is undefined

So, how do we use existing variables within a future's closure? We simply
pass them along! Wrap them up and send them together with the future using
the future() function:

(//todos)>

x = 10;

future(nil, x).then(|_, x| x + 10);

20

Specifying nil as an argument and then ignoring it could get a bit tedious.
Well, ThingsDB offers a handy shortcut!

Instead of then(), simply provide the closure as the first argument to future().
This magical closure inherits variables from your main context, eliminating the
need to pass them explicitly:

(//todos)>

x = 5;

future(|x| x + 10); // No more `nil`s!

15

As you noticed, the task result is not explicitly mentioned, but since it is an
empty future, we know it is nil anyway.

Do you want to pass the arguments explicitly to the closure? No problem!
Wrap them in a list as the second argument to future():

(//todos)>

future(|x| x + 10, [8]); // `x` is provided by the first item in the list

18

165



By leveraging this simplified syntax, you can create and work with empty
futures in a more concise and efficient way, making your asynchronous
operations in ThingsDB cleaner and easier to manage.

13.1.2 Empty Futures: Isolating Side Effects for
Efficiency

You might wonder, "Why bother with empty futures?" The key lies in their
ability to create separate contexts for closures, unlocking hidden potential.

Imagine this scenario in our to-do application: we need a procedure to retrieve
or create a user and then grab their ID (or other information, but let's focus on
ID for now).

One way to tackle this challenge is the following implementation:

(//todos)> new_procedure("get_or_create_user_id", |name| {

user = .users.get(name.lower());

if (is_nil(user)) {

wse();  // Enforced Side effect for the add_user() call

return add_user(name);

};

user.id();

});

"get_or_create_user_id"

While this works for both existing and new users, it has a flaw: it triggers side
effects even when a user already exists. This can be inefficient, especially if
the procedure is called frequently.

Here's how we can use an empty future to isolate side effects and improve
efficiency:

(//todos)> mod_procedure("get_or_create_user_id", |name| {

user = .users.get(name.lower());

if (is_nil(user)) {

return future(|name| {

wse(); // Side effect now contained within the future

add_user(name);

});

};

user.id();

});

null

Now, the main branch retrieves the existing user ID without causing a change.
If a new user needs to be created, the future's closure handles it
asynchronously, ensuring updates only happen when necessary.

166



Remember from Chapter 6.3 that we can verify if a procedure triggers side
effects by checking the with_side_effects property. Let's confirm that our
modified get_or_create_user_id procedure is truly free of them:

(//todos)>

procedure_info("get_or_create_user_id").load().with_side_effects;

false

The value false indicates no side effects are detected within the main logic of
the procedure.

13.1.3 Caution! Futures Don't Always Behave Like
Values

Before you store a future in your ThingsDB project, it is crucial to understand
a key quirk: futures store their current state, not the eventual result. Just
assigning a future to a variable works as expected, but attempting to store it in
collections or object properties can lead to unexpected results.

Let's explore the scenario:

Imagine you create a future that calculates 2 + 2 and store it in a list:

(//todos)> [future(|| 2 + 2)];

[

null

]

You might expect the list to contain [4]. However, the actual result is [null].
Why? Because you are not storing the future itself, but rather its initial state,
which is nil before the calculation finishes.

13.2 Enhance Your ThingsDB with Modules
Now that you are familiar with futures, let's explore modules, which can
significantly expand ThingsDB's capabilities. Modules can unlock various
features like sending emails, connecting to diverse databases, or making
HTTP(S) requests.

Module Types:

Python Modules: Python modules offer a familiar language option for
future potential customization.
Binary Modules: ThingsDB utilizes pre-written binary modules, providing
various functionalities. Writing your own modules in a language like Go is
possible but beyond this book's scope.

167



For this book, we'll focus on pre-built binary modules, readily available and
requiring no additional coding on your part.

To install official modules, you'll need Internet access as they are
downloaded directly from GitHub repositories.

13.2.1 Install The Demo Module

Module installation in ThingsDB happens smoothly within the /thingsdb scope
using the new_module() function. Just give your module a friendly alias (like
"demo"), then provide the corresponding GitHub repository URL where it
resides.

Want a specific version? Simply add @v0.1.0 (or similar) alongside the
URL, and you're good to go!

Switch to the /thingsdb scope and install the demo module:

(//todos)> @t

(@t)> new_module('demo', 'github.com/thingsdb/module-go-demo');

null

Once you have installed the module, use the module_info() function to confirm
its success.

(@t)> module_info("demo");

{

"conf": null,

"created_at": 1707931759,

"doc": "https://github.com/thingsdb/module-go-demo#readme",

"exposes": {

"echo": {

"argmap": ["message"],

"defaults": {"load": true},

"doc": "Echo message"

}

},

"file": "/usr/lib/thingsdb-modules/demo/bin/demo_linux_amd64.bin",

"github_owner": "thingsdb",

"github_ref": "default",

"github_repo": "module-go-demo",

"github_with_token": false,

"name": "demo",

"scope": null,

"status": "running",

"version": "0.1.0"

}

168



If the status is still "installing module...", wait a few seconds longer
for the installation to complete.

Now that the demo module is installed, let's explore how to use its capabilities
by understanding the methods it is exposing.

"echo": {

"argmap": ["message"],

"defaults": {"load": true},

"doc": "Echo message"

}

Every module exposes specific methods. For demo, it is the echo() method.
This method takes a single argument, a message, and echoes it back. The load
attribute being set to true means the echoed message will be loaded directly
into ThingsDB, making it readily accessible.

By setting load to false (the default), you can unlock a special
response format called "mpdata". This is ideal for modules that fetch
data from external sources where you do not need to store it in
ThingsDB. Instead, the data gets delivered directly to the client,
avoiding unnecessary unpacking and repackaging steps. This
significantly reduces processing overhead, making your application
more efficient.

Let's test the echo() method:

(@t)> demo.echo("Hello Module!");

[

"Hello Module!"

]

As you see, the result is a list containing the echoed message. This is
because calling a module method ultimately returns a future, similar to our
previous future examples. However, in this case, the future holds the actual
result (the echoed message) instead of being empty.

We can use the familiar then() method to capture and manipulate the echoed
message:

(@t)> demo.echo("Hello Module!").then(|result| result.upper());

"HELLO MODULE!"

Here, then() grabs the echoed message ("Hello Module!"), converts it to
uppercase, and returns the result.

169



All exposed methods accept a fixed amount of arguments, specified in
the argmap property. Any arguments exceeding this limit will not be
passed to the module's task itself. Instead, they will be parsed to the
subsequent then() or else() callback methods you might use for
handling results or errors.

13.2.3 Sending NTFYs with the HTTP(S) Request
Module

This section demonstrates another powerful module: the HTTP(S) request
module. It allows you to seamlessly interact with other web services and APIs.

Install the "ntfy" app: Download the app on your phone
(https://ntfy.sh/) and subscribe to the "ThingsDB_Book" topic (or create
your own).

Install the requests module using this code:

(@t)> new_module("requests", "github.com/thingsdb/module-go-requests");

null

Verify the installation:

(@t)> module_info("requests").load().status;

"running"

The requests module boasts a powerful post_json() method. Watch how it
sends a message to your NTFY app:

(@t)> requests.post("https://ntfy.sh/", json_dump({

topic: "ThingsDB_Book",

message: "This book is fantastic!"

})).then(|| "OK").else(|err| err.msg());

"OK"

Check your NTFY app – you should see the "This book is fantastic!"
message.

Just like then(), else() is available for all futures and plays a crucial role in
error handling. It defines what happens when a request or task encounters an
error.

While else() is not needed for simple futures that always resolve successfully,
it becomes essential when dealing with external sources like NTFY. These

170

https://ntfy.sh/


external systems can potentially fail due to network issues, server errors, or
other unforeseen circumstances. If both else() and then() are defined, only
one will be called based on the outcome (success or error).

13.2.4 Talking to Yourself: Connecting ThingsDB
Scopes

While the modules we have seen so far work out-of-the-box, others require
configuration for specific tasks. Let's explore the thingsdb module, which
allows communication across different ThingsDB scopes.

You might think, "We're already in ThingsDB, why connect to it again?". This
module unlocks the ability to communicate between different scopes within
the same ThingsDB node or even connect to separate ThingsDB clusters.
Imagine you have data stored in a different scope that you need in your
current scope, or you want to trigger actions across multiple clusters. This
module makes it possible!

As always, installation comes first:

(@t)> new_module("thingsdb", "github.com/thingsdb/module-go-thingsdb");

null

ThingsDB requires proper authentication. To grant the module access, let's
create a dedicated user. We can leverage the same new_todo_user()
procedure we established in Chapter 6.4:

(@t)> wse(); new_todo_user("module", RUN);

"1w1WtiUZqSpCEX+B3p/Dtq"

With the token in hand, we'll configure the module using set_module_conf().

Here's how:

(@t)> set_module_conf("thingsdb", {

token: "1w1WtiUZqSpCEX+B3p/Dtq",  // Replace with your token

host: "localhost",

});

null

The function set_module_conf() operates asynchronously, meaning it initiates
the configuration process in the background and returns nil immediately.

To confirm successful configuration, always use module_info():

171



(@t)> module_info("thingsdb");

{

"conf": {

"host": "localhost",

"token": "1w1WtiUZqSpCEX+B3p/Dtq"

},

"status": "running",

…  // – other information

}

Look for a status of "running" and correct configuration in the conf section.

Troubleshooting:

Error Messages: If the status shows an error, carefully examine the
message for guidance.
Detailed Logging: Set the log level to DEBUG for more information in the
node console (see Chapter 15.4 on how to enable debug logging).
Node specific: For deeper troubleshooting, utilize module_info() within a
node scope. This unlocks the number of active tasks and restarts. Active
tasks reveal current workload on that node, potentially indicating
bottlenecks. Restarts provide insight into module stability, highlighting
frequent restarts as potential red flags.

Now that the ThingsDB module is configured, let's put its cross-scope
communication power to the test!

We'll use the search_todos() procedure to find to-do's, even though we're
currently in the /thingsdb scope:

(@t)> thingsdb.run("//todos", "search_todos", ["book"]).then(|res| res);

[

{

"body": "Read a book",

"done": true,

"id": 2,

"severity": "Medium",

"user": {"name": "Alice"}

}

]

As you can see, we successfully retrieved a to-do containing "book" from the
//todos scope! This demonstrates the magic of cross-scope communication
enabled by the ThingsDB module.

13.3 Managing Your Modules: Access,
Updates, and More

172



13.3.1 Controlling Module Access

By default, all installed modules are accessible by any scope. This is indicated
by a nil value in the scope property of the module information.

To limit a module's accessibility to a specific scope, use the set_module_scope()
function. Remember, each module can only have one assigned scope at a
time, making it either globally accessible or scoped to a single entity.

13.3.2 Multiple Configurations, Multiple Installations

If you need the same module with different configurations, or with access
restrictions to different scopes, consider installing it multiple times with
different names. This allows you to tailor each instance to its specific needs.

For example: Imagine connecting to different ThingsDB clusters. Install the
thingsdb module twice with unique names, each configured to access a
different cluster.

13.3.3 Keeping Your Modules Up-to-Date
Modules are constantly evolving, so you might need to update them to benefit
from new features and bug fixes. The refresh_module() function helps you out
here. It stops the module, checks for available updates, performs the update if
necessary, and restarts the module.

For granular control over module source updates, leverage the
deploy_module() function. While sharing similarities with refresh_module(), it
offers the crucial capability to specify a new source for the module. This
empowers you to, for instance, "pin" the module to a specific version, ensuring
a stable and predictable environment. This is particularly valuable when
working with dependencies or critical modules where consistent behavior is
paramount.

173



13.4 Quiz - Challenge Your Understanding
1. Can you simplify the following code while preserving its functionality and

using a future?
future(nil, 6, 7).then(|_, a, b| a * b);

2. Can you answer this tricky question: Is it possible to directly return two
futures in a single query result in ThingsDB?

3. You encounter an exposed method within a module, and its load property
has a default value of true. What does this imply?

a. The module automatically loads into memory upon usage.
b. The method's response will be deserialized.
c. The property indicates the method is ready for use.
d. The property has no effect on the method's behavior.

4. You are working with a ThingsDB module named foo. Its exposed
method bar() has an intriguing argmap property set to ["*"]. Consider the
following code snippet:
foo.bar(nil, 42).then(|A, B| nil).else(|C, D| nil);

Choose the most accurate statement about this call to the bar() method:
a. Both A and D will be nil regardless of success or failure.
b. On success, A will be nil and B will contain the method's response.
c. On success, B will be 42 and on failure, C will be 42.
d. On success, A will contain the response and on failure, C will hold

the error.

Important: The "*" in an argmap signifies a single, unnamed argument
that can hold either nil or a thing

5. Uh oh! A module in your ThingsDB application isn't behaving as
expected. What steps can you take to diagnose the issue and get it back
on track?

Choose the most effective troubleshooting approach from the following:
a. Restart the node and hope for the best.
b. Reinstall the module without checking anything else.
c. Use the module_info() function to gather information and check the

node console logs.
d. Ignore the issue and hope it fixes itself eventually.

6. Scenario: You have a module pinned to version v0.2.1 using the @
notation. Now, a newer version (v0.3.0) with exciting features is

174



available. How can you seamlessly update the module to tap into these
enhancements?

175



13.4.1 Quiz - Answers

1. ThingsDB offers a clever feature to create futures without an actual task.
This allows you to directly combine argument unpacking with future
creation, eliminating the need for an empty placeholder. Here is the
code:
future(|a, b| a * b, [6, 7]);

This code accomplishes the identical multiplication as the original, but
leverages a more concise and efficient syntax.

2. While futures offer flexibility, directly returning two futures in a single
response is not possible. Remember, a future can only be assigned to a
variable. Assigning it to a list, for example, would simply store nil
instead of the actual future.

But wait! There is a workaround! While returning two direct futures is not
possible, you can achieve similar behavior by chaining futures using the
then() method. The first future's result can be passed to the second
future, effectively creating a chained execution. One more workaround is
to parse them as arguments to an empty future:
future(nil, future(|| 2+2), future(|| 3*3)); // response: [nil, 4, 9]

3. Answer "b" is correct. When set to true, it instructs ThingsDB to
automatically deserialize the response from the method call, making it
readily accessible for further processing or manipulation. However, if you
set the load property to false (the default), the method returns the
response as "mpdata". This option is particularly useful when you do not
need to use the data within your ThingsDB application or when you plan
to send it directly to a client. In these cases, deserializing and then
serializing it again would be unnecessary and potentially slow down your
application.

4. Answer "d" is the correct answer. The argmap property set to ["*"]
signifies that the bar() method can accept a single argument (nil or a
thing). In this case, you are providing nil as the argument. Additional
arguments (like the 42 in the code snippet) won't be processed by the
module itself. Instead, they'll be passed directly to the then() or else()
callbacks making B or D equal to 42 depending on success or failure. This
allows you to parse data to your callback logic.

5. Option "c" offers the most effective path to diagnosis. Use module_info()
to get its config and status, plus check the node console logs for clues.
These steps unlock insights into the issue, paving the way for a fix.
Remember, understanding the root cause is key!

176



6. When seeking precise control over module updates, leverage the
deploy_module() function. This tool empowers you to define the new
source for the update, replacing any pinned version tags with the desired
reference (e.g., @v0.3.0 instead of @v0.2.1). Remember to prioritize
testing updates in a non-production environment before deploying them
to ensure compatibility and smooth operation. While refresh_module()
can also update modules, it respects pinned versions.

177



Chapter 14 - Safeguarding Your Data:
Backup, Restore, Export and Import
Now that you have explored the power of ThingsDB, it is crucial to consider
data protection. While ThingsDB is designed for minimal downtime by scaling
across multiple nodes, accidents or unforeseen events can still occur,
potentially leading to data loss. Here's where backups come in!

The good news is, ThingsDB offers scheduled backups without impacting
ongoing operations. Unlike some solutions that lock access during backup
creation, ThingsDB seamlessly handles this on multi-node setups.

Later in this chapter we will also look at single collection exports and how to
import them when required. This is also useful for development as it allows
you to quickly load another collection on your local development machine
without disrupting other collections you might be working on.

14.1 Node Scopes for Backups
So far, we have used the /thingsdb scope for managing user accounts and
collections, and collection scopes for interacting with data. Now, for backups,
we need a new scope: node scopes.

Unlike the previous scopes, backups are node-specific. While each node
eventually stores the same data, you tell ThingsDB which node should create
a backup.

Production-Ready Backup Strategy
For reliable data protection, consider using at least two different nodes
for backups. This ensures backups continue even if one node fails.
Creating backups on all nodes is generally not required.

Before scheduling a backup, we need to identify the node responsible for
creating it.

Access the node scope by typing /node (@n or /n for short) in the prompt:

(@t)> @ /node

(/node)>

When you do not specify a node ID in the scope, ThingsDB automatically
uses the node you are currently connected to. To check which node this is,

178



use the node_info() function and extract the node_id property using the
following command:

(/node)> node_info().load().node_id;

0

The output 0 signifies you are currently connected to the node with ID 0.

The nodes_info() function displays all nodes within your ThingsDB setup,
providing valuable information like their IDs, names, and statuses:

(/node)> nodes_info();

[

{

"committed_change_id": 1,

"node_id": 0,

"node_name": "node0",

"port": 9220,

"status": "READY",

"stored_change_id": 1,

"stream": null,

"syntax_version": "v1",

"zone": 0

}

]

In this set-up, we only have one node with ID 0, explaining the current
connection.

Wonder why node_info() offers more detailed information compared to
nodes_info()? Both commands are executed on a specific node,
meaning you receive information based on that node's knowledge
about itself and other nodes.

However, if you have a multi-node setup, specifying the node ID is crucial for
targeted operations. To force a query on a specific node, simply include its ID
within the scope like this:

(/node)> @ /node/0

(/node/0)>

Now that you have selected the right scope, let's create your first ThingsDB
backup!

14.2 Your First Backup

179



To create a backup, use the new_backup() function. It requires at least one
argument: the target filename. Backup filenames must end with ".tar.gz".
This ensures consistency and helps you understand the format of the saved
data.

ThingsDB offers handy template variables you can embed in your filename.
These variables get automatically filled when the backup is created, making it
easier to organize and identify your backups.

Table 14.2 - Summarizing backup template variable

Variable Description Example

{DATE} Current date (YYYYMMDD format) 20240221

{TIME} Current time (HHMMSS format) 092713

{CHANGE_ID} Last committed change ID 123456

Here's a code snippet that creates a backup named
"/tmp/ti-backup-{DATE}-{TIME}.tar.gz".

Note: If you are using Docker Compose as described in this book, remember
to adjust /tmp to /dump (which is volume-mounted to your local disk).

(/node/0)> new_backup("/tmp/ti-backup-{DATE}-{TIME}.tar.gz");

0

The return value (0 in this case) is a unique backup ID assigned within that
specific node.

Now that you have the backup ID, let's check its status using the backup_info()
function:

(/node/0)> backup_info(0); // Use the backup ID (0 in our example)

{

"created_at": 1708507632,

"file_template": "/tmp/ti-backup-{DATE}-{TIME}.tar.gz",

"files": [

"/tmp/ti-backup-20240221-092713.tar.gz"

],

"id": 0,

"result_code": 0,

"result_message": "success - 2024-02-21 09:27:13Z"

}

In this example, the result_code is 0, indicating a successful backup.
Additionally, the result_message confirms this with

180



"success - 2024-02-21 09:27:13Z". In case of issues, the result message offers
further information or troubleshooting guidance.

Production-Ready Backup Strategy
During backup creation, the node enters a temporary mode called
AWAY_MODE. This mode ensures data consistency by temporarily
suspending regular queries while the backup process takes place.
However, queries specifically directed to that node using the node
scope are still accepted and handled normally.

For multi-node setups, this temporary unavailability goes unnoticed by
clients as queries are automatically forwarded to other available
nodes. ThingsDB ensures only one node enters AWAY_MODE at a time,
guaranteeing uninterrupted service while maintaining data integrity.

14.3 Restoring Your Data
Having created a backup, let's discuss restoring it. For full backups like the
one we made earlier, a comprehensive restore is the only option. To ensure a
smooth restoration process, ThingsDB performs some essential pre-checks:

Production-Ready Backup Strategy
Instead of directly restoring onto your primary ThingsDB, consider a
safe testing approach using separate storage paths. Set temporary
environment variables for THINGSDB_STORAGE_PATH and
THINGSDB_MODULES_PATH pointing to dedicated directories. This allows
you to run ThingsDB using this alternate location leaving your primary
data intact.

User Permissions:
The user initiating the restore must possess FULL privileges on the
/thingsdb scope.

Data Presence:
No existing collections: Verify this using collections_info() and, if
necessary, remove them with del_collection(). (Note: empty collections
may exist and are ignored)
No existing modules: Use modules_info() to check and del_module() to
remove any modules if needed.
No tasks: Check for tasks in the /thingsdb scope using the tasks()
function and remove them if necessary.

Node Status:

181



All nodes must be online and ready: If not, either remove the problematic
node or wait for it to be ready. Use nodes_info() to monitor node status.
Multi-node setups: All committed changes must be stored on all nodes.
nodes_info() displays both committed_change_id and stored_change_id for
each node. This check is not required for single-node setups.

Initiate the restore process using the restore() function within the /thingsdb
scope. This function requires the filename of the backup you want to restore.
Additionally, you can provide an optional thing argument containing extra
restore options for further customization.

Here's an example using restore options:

(/t)> restore("/tmp/ti-backup-20240221-092713.tar.gz", {

take_access: true,

restore_tasks: true,

});

0

In the provided example, the two key restore options are:

take_access: true

This grants full access to all restored scopes only to the user performing
the restore. If you keep this option as the default false, access will be
restored based on the original user permissions associated with each
scope.

restore_tasks: true

This includes scheduled tasks in the restoration process. However, keep
in mind that tasks might automatically trigger based on their schedules
once restored. This could be undesirable if you need time to adjust the
environment after the restore. The default false setting prevents task
execution.

After completing the restore, even with take_access: true, re-authenticate by
signing out and signing in again due to potential user ID changes.

While most modules function after a ThingsDB restore, some may
need a nudge. Check their status with modules_info(). If any are not
working properly, use refresh_module() to reload their configuration
and state. Alternatively, restarting the node(s) will also refresh all
modules.

14.3.1 Restoring Data from a Multi-Node Setup

182



When restoring data from a backup created in a multi-node ThingsDB setup,
you might encounter unintended behavior on single-node environments like
your development machine. During the restore process, ThingsDB attempts to
contact other nodes based on the information stored in the backup, which can
be disruptive in this context.

To prevent this unnecessary search for non-existent nodes, simply restart
your ThingsDB instance after the restore is complete using the --forget-nodes
command-line argument. This instructs ThingsDB to disregard any stored
node information and operate as a single-node setup, aligning with your
development environment.

14.4 Automating Your Backups
ThingsDB empowers you to schedule automatic backups, ensuring regular
data protection without manual intervention. Let's explore how to set up
scheduled backups:

The new_backup() function offers three additional arguments for scheduling:

start_ts

Define the start date and time for the initial backup. If omitted, the
backup starts immediately.

repeat

Set the repetition interval in seconds. For daily backups, use 24 * 3600.
Leaving this blank creates a one-time backup.

max_files

Determine the maximum number of backup files to retain. When this
limit is reached, the oldest backup is automatically removed. The default
is 7.

Let's schedule a daily backup at 22 PM Kyiv time, keeping up to 14 backup
files:

(/t)> @ /node/0

(/node/0)> new_backup(

"/tmp/daily-{DATE}-{TIME}.tar.gz",

datetime().to("Europe/Kyiv").replace({hour: 22, minute: 0, second: 0}),

24*3600, // Repeat every 24 hours

14, // Keep 14 backup files

);

1

This starts a backup immediately as we start with a time in the past, the next
one 24 hours later relative to the given start time.

183



Use backup_info() and the backup ID (1) to confirm the schedule:

(/node/0)> backup_info(1);

{

"created_at": 1708624740,

"file_template": "/tmp/daily-{DATE}-{TIME}.tar.gz",

"files": [],

"id": 1,

"max_files": 14,

"next_run": "2024-02-22 20:00:00Z",

"repeat": 86400

}

This shows details of your backup schedule, including the next run at 22:00
PM Kyiv time (2024-02-22 20:00:00Z), repeat interval, and maximum file count.

14.4.1 Ensuring Backup Health

ThingsDB offers a convenient function called backups_ok() to quickly check the
overall health of your backup system. It returns a simple true or false value,
making it easy to monitor if all backups are running as planned.

true: All scheduled backups are successful or have not yet started.
false: At least one backup has failed.

(/node/0)> backups_ok();

true

This response indicates that all your scheduled backups are currently
successful or have not started yet.

14.4.2 Google Cloud Storage

Looking to run ThingsDB on Google Cloud Platform (GCP)? We've got you
covered! ThingsDB offers specialized Docker images for GCP, enabling you to
write backups directly to a storage bucket.

While we do not delve into the complete workflow here, we want you to be
aware of this powerful option. More cloud platforms might be supported in
future releases, so stay tuned to the documentation for updates.

For GCP users, the ThingsDB GitHub repository provides a detailed guide for
setting up backups on the GKE platform:

GitHub Link: https://github.com/thingsdb/ThingsDB/tree/main/gke#readme

What you will find:

184

https://github.com/thingsdb/ThingsDB/tree/main/gke#readme


Step-by-step instructions for configuring ThingsDB on GKE with Google
Cloud Storage integration.
Guidance on utilizing the new_backup() function to write backups to your
storage bucket.
Essential considerations for managing and monitoring your backups.

14.5 Exporting and Importing Collections
While backups are crucial for disaster recovery, sometimes you need to work
with specific collections or data subsets. ThingsDB's export() function
provides flexibility for these scenarios.

Collection Schemas

Run export() without arguments to retrieve the collection schema definition in
a readable format. This includes enumerators, types, and procedures, but not
the actual data.

Exporting Everything

Call export() with a "thing" argument containing a dump property set to true.
This exports the entire collection, including data and tasks (if any), in
MessagePack format. You can then use the import() function to restore this
data.

ThingsDB Prompt simplifies the export/import process by letting you directly
invoke export() and import() functions from the command line, eliminating the
need for manual file handling.

Use export as an argument to write an export to a file. The default for
things-prompt is to export everything:

$ things-prompt -u admin -p pass -s //todos export /tmp/dump.mp

Use import as an argument to import the exported data into a new collection:

$ things-prompt -u admin -p pass -s //dev import /tmp/dump.mp

This creates a new collection "dev" with data identical to the original "todos"
collection.

185



Production-Ready Backup Strategy
Tasks are not automatically imported during collection imports to
prevent unintended immediate execution. If your exported collection
contains tasks and you want them imported, use the --tasks flag with
the import command.

14.5.1 Exporting Collection Schemas

You can also export just the collection's definition (enumerators, types,
procedures) for future reference or sharing. This exported schema is in a
readable ThingsDB code format.

Include the --structure-only flag with the export command:

$ things-prompt \

-u admin -p pass -s //todos export /tmp/dump.ti --structure-only

This creates a pain text file /tmp/dump.ti containing the collection's code,
including enum definitions like:

// Enums

set_enum('Severity', {

Medium: 1,

Low: 0,

High: 2,

str: |this| `{this.name()} ({this.value()})`,

});

// … more lines

As before, use import to import the exported schema into a (new) collection.

$ things-prompt -u admin -p pass -s //schema import /tmp/dump.ti

This creates a new collection "schema" with the same enumerators, types and
procedures as the original, but without any data.

Importing full collections with data can only be done into new or empty
collections. This prevents accidental data overwrites.

However, plain text imports (like created by a --structure-only export)
treat the imported code as a regular ThingsDB query and can apply it
to any existing collection. This means it directly executes the provided
code within that collection, potentially modifying data or creating new
entities.

186



14.6 Choosing Your Tool: Backups vs. Exports
In conclusion, exports and backups are both valuable tools, but serve distinct
purposes:

Exports: Ideal for development environments. They provide an easy way
to extract specific collections or their structures for testing, sharing data
subsets, or migrating between instances.
Backups: Essential for disaster recovery and protecting production data.
They create complete copies at specific points in time, ensuring you can
recover from unexpected events without impacting your ThingsDB
operations. Backups are non-intrusive and run seamlessly in the
background, safeguarding your data without disrupting your workflow.

Good luck with the quiz, and see you in the next chapter on adding nodes to
your ThingsDB set-up!

187



14.7 Quiz - Challenge Your Understanding
1. Which approach is more suitable for safeguarding your ThingsDB data?:

backups or exports?
a. Backups
b. Exports
c. Both, depending on the situation

2. For disaster recovery, what is the recommended scope for creating a
backup using the new_backup() function?

a. A collection scope, like: //stuff or //todos
b. The client connection node scope: /n
c. ThingsDB scope: /thingsdb
d. A specific node scope like: /n/0 or /n/1

3. Disaster strikes! You accidentally forget your password and lose access
to your ThingsDB instance. Thankfully, you have a recent backup. What
is the best way to regain access to your data?

a. Restore the backup without any additional options and hope for the
best.

b. Restore the backup using restore() and manually grant yourself
access to each individual scope.

c. Restore the backup using restore() with the take_access: true
property, regaining access to all restored scopes automatically.

d. There is no way to recover access without knowing the password.

4. How can you verify that your ThingsDB backups are functioning as
intended?

5. Consider the behavior of tasks during imports and restores: By default,
they are not included. Why do you think this happens, and what are the
potential implications?

a. To prevent unintended execution and potential data loss.
b. To reduce the file size of the import or restore.
c. To allow users to selectively restore or import specific tasks.
d. Because tasks are not considered part of the core data structure.

188



14.7.1 Quiz - Answers

1. Answer "a" is correct. Backups are your data's safety net. They create
complete copies at specific points in time, ensuring you can recover from
disasters like hardware failures or accidental deletion. These backups
run silently in the background on designated nodes and can be
scheduled for automatic execution, safeguarding your data without
disrupting your ThingsDB operations.

Exports on the other hand allow you to extract specific collections or
structures for development purposes. This makes them ideal for creating
testing environments, sharing data subsets, or migrating data between
instances.

2. The correct answer is "d". While both /n and /n/0 are technically valid
scopes for creating a backup, using an explicit node scope like /n/0 is
recommended as it explicitly specifies the node on which the backup will
be scheduled, eliminating ambiguity and potential confusion.

3. The correct answer is "c". Restore the backup using restore() with the
take_access: true property. This efficiently restores your data and
automatically grants you access to all restored scopes, ensuring a
smooth recovery process.

(Once the restore is completed, always re-authenticate due to possible
user ID changes!!)

4. The backups_ok() function provides a convenient boolean answer on
backup success, but it does not give you the "why" behind failures. For
that, you need the backups_info() function, which goes beyond a simple
true / false by providing a result message, often pinpointing the exact
issue or offering clues for troubleshooting.

5. Including tasks in imports or restores can lead to unexpected behavior
and potential data manipulation if not carefully considered. If, for
example, a task is scheduled for a specific date in the past, restoring it
might trigger immediate execution, potentially causing issues with
outdated data or unintended consequences. Therefore, answer "a" is
correct.

189



Chapter 15 - Multiple Nodes and
Debugging
Ready to unleash the full potential of your ThingsDB setup? This chapter
dives into two essential topics:

First, we'll guide you through the process of integrating additional nodes.
Next, we'll equip you with valuable troubleshooting tools, from identifying
bottlenecks to analyzing data flow, ensuring your ThingsDB runs smoothly and
efficiently.

Not interested in exploring multiple nodes for development? Feel free to skip
the next sections and continue at 15.3 - Node Counters.

15.1 Scaling Up: Adding Nodes
In this section, we shall guide you through two options for adding nodes:

ThingsDB from Source: We'll provide step-by-step instructions for starting
a new node in this scenario.
Using Docker Compose: If you followed the Docker installation
instructions, we'll explain how to add another node using Docker
Compose.

Real-world deployments: While this section focuses on testing with
multiple nodes on a single machine for development purposes,
remember that in production environments, you would typically run
each node on a separate machine or leverage a container
orchestration platform like Kubernetes.

15.1.1 ThingsDB from Source
Ready to test multiple ThingsDB nodes on a single machine? Let's explore
how to achieve this when you have built ThingsDB from source.

Each node requires unique TCP ports and data storage paths. You can
configure them through environment variables or a configuration file.

Table 15.1.1 summarizes the essential variables for setting up multiple nodes.
For a full list of configuration options, refer to the documentation:
https://docs.thingsdb.io/v1/getting-started/configuration/

190

https://docs.thingsdb.io/v1/getting-started/configuration/


Table 15.1.1 - Relevant environment variables for multiple nodes

Variable Description

THINGSDB_LISTEN_CLIENT_PORT Listen to this TCP port for client socket
connections.

THINGSDB_LISTEN_NODE_PORT Listen to this TCP port for node connections.

THINGSDB_HTTP_API_PORT (Optional) Listen to this TCP port for HTTP API
requests.

THINGSDB_HTTP_STATUS_PORT (Optional) Listen to this TCP port for HTTP
status requests.

THINGSDB_WS_PORT (Optional) Listen to this TCP port for
WebSocket requests.

THINGSDB_MODULES_PATH Path where ThingsDB modules are stored.

THINGSDB_STORAGE_PATH Location to store ThingsDB data.

Create a separate directory: (we use "node1" and consider the first one as
"node0")

$ mkdir ~/node1

Start the node with unique port numbers and data paths:

$ THINGSDB_LISTEN_CLIENT_PORT=9201 \

THINGSDB_LISTEN_NODE_PORT=9221 \

THINGSDB_HTTP_API_PORT=9211 \

THINGSDB_HTTP_STATUS_PORT=8081 \

THINGSDB_WS_PORT=9271 \

THINGSDB_MODULES_PATH=~/node1/modules \

THINGSDB_STORAGE_PATH=~/node1/data \

thingsdb --secret pass

…

Waiting for an invite from a node to join ThingsDB...

You can use the following query to add this node:

new_node('pass', 'mylaptop', 9221);

With the node waiting for an invite, skip the next section and jump to
15.2 - Invite the New Node.

191



15.1.2 Using Docker Compose

In your docker-compose.yml file, find the "services" section and uncomment (or
add) the following configuration for a second node:

services:

node1:

<< : *ti

hostname: node1

container_name: node1

command: "--secret pass"

ports:

- 8081:8080

volumes:

- ./node1/data:/data/

- ./node1/modules:/modules/

- ./node1/dump:/dump/

Navigate to the directory containing your docker-compose.yml file and run:

$ docker compose up -d

[+] Running 2/2

✔ Container node1  Started

✔ Container node0  Running

Verify the new node is running by checking the container logs:

$ docker logs node1

…

Waiting for an invite from a node to join ThingsDB...

You can use the following query to add this node:

new_node('pass', 'node1', 9220);

15.2 Invite the New Node
Now that your new node is waiting for an invitation (as mentioned in the
previous section), it is time to officially welcome it to your ThingsDB cluster.

ThingsDB conveniently provides the invitation command directly in the logs. It
typically looks like this:

new_node('pass', 'node1', 9220);

The new_node() function takes three arguments:

192



1. Secret Password: This is the one-time password you used when
starting the node (e.g., --secret pass). It ensures only authorized nodes
can join.

2. Hostname or IP Address: Identify the new node by its hostname (e.g.,
node1) or IP address if your DNS isn't working perfectly.

3. Node Port: This is the port number the new node listens on for
communication with other nodes (e.g., 9220) (do not confuse it with the
client port).

Switch to the /thingsdb scope in your client and paste the new_node(..)
command as shown in the logs output.

(@t)> new_node('pass', 'node1', 9220); // Replace the arguments if needed

1

The command will return the ID of the new node.

Allow approximately 20 seconds for the nodes to synchronize. This time may
vary depending on your system load. During this process, the first node might
be temporarily unavailable as it handles the joining process.

Only when adding a second node to your ThingsDB cluster, be aware
of a temporary period of unavailability. This is because the existing
node needs to perform synchronization to integrate the new node.
This process typically takes around 20 seconds and might cause
ThingsDB to seem unresponsive during this time.

Adding additional nodes does not experience this unavailability. With
more nodes available, the synchronization process is distributed,
ensuring continuous operation and request handling.

Once the wait is over, switch to a /node scope and run the nodes_info()
function to see information about all nodes.

(@t)> @n

(@n)> nodes_info();

…

You should see two nodes with status "READY". If one of the nodes is currently
in "AWAY" mode, it means ThingsDB has chosen it for a specific task,
temporarily taking it out of the general cluster operations. This does not
indicate an issue, and the node will return to "READY" once its task is
completed.

To scale your ThingsDB cluster, simply repeat the steps outlined in sections
15.1 and 15.2 for each new node. Remember to use unique data paths and
ports to avoid conflicts.

193



15.3 Node Counters
ThingsDB tracks various counters to provide insights into a node's well-being.
These counters start at zero on node startup and can be manually reset with
the reset_counters() function.

Start exploring counters by navigating to a node scope.

(@t)> @ /node/0

(/node/0)>

Run the counters() function:

(/node/0)> counters();

{

"average_change_duration": 0.0013940499503816795,

"average_query_duration": 0.0003048990412233053,

"changes_committed": 5262,

"changes_failed": 0,

"changes_killed": 0,

"changes_skipped": 0,

"changes_unaligned": 1,

"changes_with_gap": 0,

"garbage_collected": 1,

"largest_result_size": 400999,

"longest_change_duration": 0.002760923,

"longest_query_duration": 0.010911413,

"queries_from_cache": 235,

"queries_success": 355260,

"queries_with_error": 1499,

"quorum_lost": 1,

"started_at": 1709132982,

"tasks_success": 0,

"tasks_with_error": 0,

"wasted_cache": 4

}

While it may seem like a lot of information, let's break down the key metrics:

Performance:
average_change_duration, average_query_duration: Indicate average
processing times for changes and queries (in seconds).
queries_success: Number of successful queries handled since the last
reset.

Health Indicators:
changes_failed, changes_killed, changes_skipped, changes_with_gap: Must
remain at zero as they indicate potential data corruption.

194



changes_unaligned, quorum_lost: Monitor these values. While slight
increases are possible, significant growth suggests node collisions
during change ID claiming.

Resource Management:
garbage_collected: Number of items cleaned up by garbage collection.
queries_from_cache, wasted_cache: Indicate cache utilization and
potential optimization opportunities.

Remember:

started_at: Reflects the last counter reset time or node startup time if no
reset occurred.
Queries and tasks with errors (queries_with_error, tasks_with_error) are
not inherently problematic. Some intentional actions might trigger them
(e.g. lookup_error when something is not found etc.).
By default, caching applies to queries exceeding 160 characters
(adjustable via the environment variable THINGSDB_THRESHOLD_QUERY_CACHE).
Queries stay cached for 15 minutes (adjustable via
THINGSDB_CACHE_EXPIRATION_TIME).

In rare cases, data corruption might be indicated by non-zero values
in one or more of the critical counters (changes_failed, changes_killed,
changes_skipped or changes_with_gap). While this is unlikely to occur in
typical operation, it is essential to know how to recover from such
situations.

ThingsDB provides the --rebuild command-line argument as a last
resort option for recovering a single node. When used, this command
will erase the node's local data entirely, ensuring a clean slate and
then triggers a full synchronization with the remaining healthy nodes in
the cluster, rebuilding its local data based on the latest state from its
peers.

Analyzing node counters offers valuable insights into your ThingsDB cluster's
health and performance. Use this information to identify potential issues,
optimize resource usage, and ensure your ThingsDB setup runs smoothly.

15.4 Diving Deeper with Node Information
ThingsDB offers granular control over various aspects of node behavior
through configuration options. Let's explore how to access and manage these
settings.

Similar to the query cache in the previous section, some options can be
adjusted using environment variables. It is crucial to maintain consistency
across all nodes. For example, if THINGSDB_RESULT_SIZE_LIMIT differs between

195



nodes, the response size for queries might vary depending on the responding
node.

The node_info() function, introduced in the previous chapter, comes in handy
for reviewing configuration parameters and ensuring they match across your
nodes. It also displays the ThingsDB version and its dependent library
versions. Aim for consistency in these versions, except during controlled
upgrades (performed one node at a time).

node_info() also exposes the current log level for a node. You can set the
initial level using the command-line argument
--log-level {debug,info,warning,error,critical} or adjust it dynamically. Let's
check the current level:

(/node/0)> node_info().load().log_level;

"WARNING"

A default setting should display "WARNING".

Need more detailed insights into your node's activities? ThingsDB allows you
to dynamically adjust the log level using the set_log_level() function.

(/node/0)> set_log_level(DEBUG); // DEBUG, INFO, WARNING, ERROR, CRITICAL

null

Command-line arguments for log levels use lowercase (debug, info,
warning, error, critical), while ThingsDB internally defines them in
uppercase (DEBUG, INFO, WARNING, ERROR, CRITICAL).

Check the terminal where the node with ID 0 is running (or use
"docker logs node0"" if using Docker Compose).

Example output:

…

[D 2024-02-23 21:18:56] not going in away mode (no reason for going into

away mode)

[D 2024-02-23 21:18:59] not going in away mode (no reason for going into

away mode)

The D at the beginning of each line indicates a DEBUG log message.

Remember:

Log levels (DEBUG and INFO) provide extensive details but can overwhelm
your logs. Use them for troubleshooting or specific insights.

196



Levels (WARNING, ERROR, CRITICAL) offer concise information about potential
issues.
Choose the log level that best suits your current needs and monitoring
goals. Stick with WARNING for normal operation.

15.5 New Version, Upgrade
New ThingsDB versions bring exciting enhancements! Luckily, they're
backwards compatible, meaning you can still access data from the very first
release (v0.7.5).

Upgrading one at a time:

For a smooth upgrade, follow a rolling update approach: update one node at a
time while ensuring full synchronization before moving on to the next. This
prevents downtime during the process.

Monitoring node readiness:

To easily determine when a node is ready for upgrade, enable HTTP status
ports for each node. You can check the current status with:

(/node/0)> node_info().load().http_status_port;

8080

This shows the port number (e.g., 8080) or "disabled" if not configured.

To enable it, set the THINGSDB_HTTP_STATUS_PORT environment variable to your
desired port (e.g., 8080) and restart the node.

15.5.1 Understanding the HTTP Status Port

The enabled port offers three URLs:

/ready

Responds with "200 OK" if the node is in READY, AWAY, or AWAY_SOON status,
indicating it is ready for the next upgrade. Any other status (e.g.,
SYNCHRONIZING) triggers a 503 Service Unavailable response.
/status

Shows the current node status.
/health

Always responds with "200 OK", regardless of the node's state, indicating
the node is responding.

15.5.2 Using the /ready URL

197



This URL plays a critical role in the cluster coordination process during node
startup. It acts as a synchronization checkpoint, ensuring a node is fully
operational before subsequent nodes initiate their own restarts.

Use the curl command (available on Windows, Mac, and most Linux systems)
to check the /ready status from the command line:

$ curl http://localhost:8080/ready

OK

A successful response of OK confirms that the node has completed its
synchronization process and is now fully operational. This ensures a stable
starting point for other nodes and allows them to proceed with their own
restart or initialization safely.

15.5.3 Liveness and Readiness

In the realm of dynamic environments like Kubernetes, where containerized
applications are subject to frequent restarts and scaling operations,
maintaining application health and availability becomes a top priority.
ThingsDB, with its powerful HTTP status port, and Kubernetes' built-in
liveness and readiness probes, form a combination to streamline upgrades
and guarantee application responsiveness throughout the process.

15.6 Data Related Debugging
While this chapter primarily explores node-related functionalities, ThingsDB
also offers valuable tools for data debugging.

15.6.1 Checking References

In ThingsDB, everything is treated as an object. The refs() function helps you
determine the number of references an object has within the database. This
information can be crucial for understanding how data is stored and
manipulated.

For example, check the references for nil:

(/t)> refs(nil);

23

While 23 references for nil might seem unexpected, this reflects internal
system references and the nature of immutable objects. Unlike mutable data,
immutable objects like nil, true, false, strings, and numbers can be shared

198



across scopes without creating copies, potentially contributing to the
reference count.

This example demonstrates how refs() can help verify list copying behavior:

(/t)> A = []; B = A; refs(A);

3

Here, we see three references:

One for the original list A.
One for the reference held by variable B.
One temporary reference introduced by the refs() function.

When interpreting refs() results, remember to account for the additional
reference introduced by the function itself.

(/t)> A = []; B = [A]; refs(A);

2

This output (2 references) confirms that adding a list to another list creates a
copy. The original list A only has two references:

One for itself, A.
One from the refs() function call.

The list within B is a separate copy and does not hold a reference to the
original A.

15.6.2 Finding Things

The search() method, available on all "thing" instances, offers a valuable tool
for debugging purposes. It enables you to search for a specific "thing" within
their properties.

The search() method accepts two arguments:

1. The "thing" you are searching for.
2. An optional thing with configuration settings:

deep: Controls the maximum depth of the search (defaults to 1).
limit: Restricts the number of returned results (defaults to 1).

Imagine you have a Todo object with ID 2 in the //todos scope but are unsure
of its location within the collection. Here's how to use search() to locate it:

199



(/t)> @ //todos

(//todos)> .search(Todo(2), {deep: 3, limit: 1});

[

{

"key": "todos",

"key_type": "set",

"parent": {"#": 10},

"parent_type": "User"

}

]

This output indicates that the first occurrence of the Todo with ID 2 is found
within the todos property of a User object with ID 10.

While search() is valuable for debugging, its potential performance impact
makes it unsuitable for most production queries. Exercise caution when
increasing the deep argument, as higher values can significantly slow down
the search process.

15.6.3 Profiling Code Performance

Optimize your ThingsDB queries and identify potential bottlenecks with the
timeit() function. This handy tool measures the execution time of code
blocks, providing valuable insights for performance tuning.

To use it, simply enclose the code you want to evaluate within the timeit()
function. Once executed, timeit() returns a new object containing two key
properties:

data: This property stores the result of the executed code itself.
time: This property records the execution time in seconds, providing
valuable insights into the performance of your code.

Let's explore how to use timeit() to compare the performance of two
approaches for calculating the sum of a large list.

Using reduce():

(/t)> r = range(50000); timeit({

r.reduce(|t, x| t += x, 0);

});

{

"data": 1249975000,

"time": 0.009375523

}

Using the built-in sum():

200



(/t)> r = range(50000); timeit({

r.sum();

});

{

"data": 1249975000,

"time": 0.000410818

}

The results clearly demonstrate that the native sum() method is significantly
faster than the reduce() approach in this case. The function timeit()
empowers you to make decisions about query optimization, enhancing the
overall performance of your ThingsDB applications.

201



15.7 Quiz - Challenge Your Understanding
1. When adding a new node to a ThingsDB cluster, under what

circumstances and for what reason might you need to wait before
proceeding with further actions?

2. Which command-line argument is only required once when starting a
new node to enable it to join an existing ThingsDB cluster?

3. In a multi-node ThingsDB setup, which of the following practices are
considered essential for ensuring optimal performance and stability?

a. Use the same ThingsDB version across all nodes.
b. Ensure consistent library versions across all nodes.
c. Maintain identical configuration settings for options that control

query behavior (e.g., THINGSDB_RESULT_SIZE_LIMIT).
d. Regularly monitor counter metrics using the counters() method on

each node to assess cluster health.
e. All of the above.

4. Which methods allow you to modify the log level of a ThingsDB node,
enabling you to control the verbosity of its output?

a. --log-level command-line argument.
b. set_log_level() function within the node scope.
c. Both of the above methods.
d. Controlling the log level is not possible.

5. You're planning to implement liveness and readiness probes for
ThingsDB nodes, but the node_info().load().http_status_port; command
returns "disabled", signaling a crucial feature is not yet active. What
specific steps must be taken to successfully enable the HTTP status port
for these nodes, allowing for effective health checks?

6. Predict the reference count and explain the reasoning behind your
answer for the following code snippet:
t = {};

refs(t); // ???

7. Consider a multi-node setup. You set a property .x in one query and
then immediately try to read its value in a subsequent query. However,
you do not get the expected result. Why might this occur?

202



15.7.1 Quiz - Answers

1. Waiting, for about 20 seconds, depending on the size and performance,
is only essential for the second node as it synchronizes from the first.
Subsequent nodes can leverage any existing node, allowing the cluster
to remain responsive to queries during the process.

2. Joining a new ThingsDB node to an existing cluster requires the
--secret <SECRET> argument only once during initial node startup. This
secret tells the node to wait for an invite and serves as a security
measure as it prevents unauthorized nodes from joining by requiring the
same secret within the new_node() function.

3. The answer is "e", all of the above. By adhering to these best practices,
you can create a robust and reliable multi-node ThingsDB environment
that delivers consistent performance and efficient data management.

4. Answer "c". ThingsDB provides two methods to modify the log level. The
--log-level command-line argument sets the initial log level when
starting the node and the set_log_level() function in the node scope
dynamically adjusts the log level during runtime.

5. To enable the HTTP status port in ThingsDB, set the
THINGSDB_HTTP_STATUS_PORT environment variable and restart the node.
(e.g. THINGSDB_HTTP_STATUS_PORT=8080). While less common, ThingsDB
also allows you to configure the HTTP status port within a configuration
file. Refer to the official documentation for more information:
https://docs.thingsdb.io/v1/getting-started/configuration/

6. The reference count is 2. Both t and the refs() function hold a
reference, leading to a total of 2.

7. Your second query might hit a node that has not yet received the update
to property .x, leading to the unexpected result.

There are two main solutions to address this:

Combine read and write in a single query: This ensures both
operations happen on the same node, guaranteeing you read the
latest value of .x.
Enforce write ordering with wse(): If combining read and write is not
an option, you can use the wse() function. This enforces a change,
effectively forcing subsequent queries to wait for the change to
propagate before responding. This guarantees eventual
consistency but can introduce a slight performance overhead.

203

https://docs.thingsdb.io/v1/getting-started/configuration/


Chapter 16: Unleashing the Power of the
HTTP API
In this final chapter, we delve into the realm of ThingsDB's HTTP API, a
valuable tool that empowers you to interact with your data beyond the
ThingsDB client.

This chapter assumes you have already created the "todos" collection.
If you have not, or need a fresh copy,
Appendix I - Chapter Data Import provides instructions on importing
the collection data.

Why a HTTP API?

The HTTP API offers several compelling advantages:

Convenience: It provides a simple and familiar interface for interacting
with ThingsDB, especially when the client is unavailable for your
programming language.
Flexibility: It facilitates seamless integration with various tools and
services, such as webhooks, external applications, and custom scripts,
extending the reach of your data manipulation capabilities.

16.1 Enabling the API
By default, the HTTP API is disabled for security reasons. To activate it, you
need to configure the API port using the THINGSDB_HTTP_API_PORT environment
variable:

Docker Compose: If you are using Docker Compose, this variable is
already included in the provided docker-compose.yml file.
Manual Startup: For manual node startup, set the environment variable
before launching the node process.

Once configured, you can verify if the API is enabled and determine its
listening port using the following command within the node scope:

(/node/0)> node_info().load().http_api_port;

9210

Remember, the API needs to be enabled individually on each node. You can
either check each node or target the specific node you intend to interact with.

204



With the API up and running, the next sections will equip you with the
knowledge to harness its full potential. We'll explore various API endpoints,
authentication mechanisms, and practical use cases, empowering you to
unlock new possibilities for managing and interacting with your ThingsDB
data.

16.2 Exploring Your First API Call
Authorization is crucial for safeguarding your ThingsDB data. This section
delves into basic authentication using a username and password.

Let's leverage curl to execute our first API call, utilizing the default credentials
admin and pass:

$ curl --location --request POST 'http://localhost:9210//todos' \

--header 'Content-Type: application/json' \

--user admin:pass \

--data-raw '{

"type": "query",

"code": "a * b;",

"vars": {"a": 6, "b": 7}

}'

42

Breaking down the steps:

1. Endpoint: http://localhost:9210//todos
This specifies the target endpoint for our API call. The //todos part is the
scope. You can also use the full scope name /collection/todos in case
you do not like the two slashes.

2. Method: POST
This indicates that we are sending data to the server.

3. Content-Type: application/json
This informs the server that we are sending JSON data.

4. Authentication: --user admin:pass
This provides the username and password for basic authentication.

5. Data: --data-raw
This specifies the raw JSON data containing the query information.

6. JSON data:
The request body containing the query details:

a. "type": "query": Specifies the request type as a query.
b. "code": "a * b;": Defines the query code to be executed.
c. "vars": {"a": 6, "b": 7}: Provides variables used within the query

code.

16.2.1 Securing Admin Credentials

205



The previous example highlights the crucial importance of implementing
secure authentication practices in production environments. Here are two
recommended approaches:

Change default credentials

Replace the default username and password for the administrator account
with strong, unique credentials. This prevents unauthorized access using well-
known default values.

Token-based authentication

Create a token for the admin account and remove its password entirely:

(/t)> token = new_token("admin");

set_password("admin", nil); // Remove the password

token; // Return the new token

"7vXo2vgtnyaWsQ1LKw9CkI"

Carefully safeguard the generated token. Losing the token means losing
access to the admin account, as there is no password to fall back on.

16.2.2 Token Authentication

Before we continue exploring API calls, let's create a new user account and
grant it some basic permissions for exploration. While we could utilize the API
itself for this process, we'll demonstrate using the things-prompt:

(/t)> // Use the /thingsdb scope

// Create the user "web"

user = new_user("web");

// Grant access to the specified scopes

grant("/node", user, QUERY);

grant("/thingsdb", user, QUERY);

grant("//todos", user, QUERY | RUN);

// Generate a new token for user "web"

new_token(user);

"qOeH6Mny1jLgc6WRGujk5x"

With the generated token, we can now perform queries through the API:

206



$ curl --location --request POST 'http://localhost:9210/node/0' \

--header 'Content-Type: application/json' \

--header 'Authorization: Bearer qOeH6Mny1jLgc6WRGujk5x' \

--data-raw '{

"type": "query",

"code": "node_info().load().version;"

}'

"1.6.0"

As you can see, the response "1.6.0" confirms the successful execution of the
query through the API using the generated token and specified user
permissions. Notice the scope (/node/0) specified in the URL, effectively
targeting the node with ID 0. We also replaced the --user argument which we
previously used for username and password authentication, with an
Authorization header containing the Bearer prefix and the generated token.

16.3 Running Procedures with the API
The ThingsDB API extends beyond queries and allows you to execute
procedures as well.

Invoking procedures:

1. In the JSON data body, ensure the "type" field is set to "run" to indicate
procedure execution.

2. Include a "name" field within the data body, specifying the name of the
procedure you wish to call. This name corresponds to the procedure
defined within the scope provided in the URL.

3. If the procedure requires arguments, include an "args" field. This field
can be formatted in two ways:

Positional arguments (array): Represent arguments as an array,
with each element corresponding to the expected argument order
in the procedure definition.
Key-value pairs (object): Employ an object to explicitly define
arguments by their respective names. Each key-value pair
associates a name with its corresponding argument value.

Let's revisit the previously created search_todos procedure within the //todos
scope. Here's how to execute it with positional arguments using curl:

207



$ curl --location --request POST 'http://localhost:9210//todos' \

--header 'Content-Type: application/json' \

--header 'Authorization: Bearer qOeH6Mny1jLgc6WRGujk5x' \

--data-raw '{

"type": "run",

"name": "search_todos",

"args": ["book"]

}'

[{"id":2,"body":"Read a book","user":

{"name":"Alice"},"severity":"Medium","done":true}]

Here's an alternative way to call the same procedure using key-value
arguments:

$ curl --location --request POST 'http://localhost:9210//todos' \

--header 'Content-Type: application/json' \

--header 'Authorization: Bearer qOeH6Mny1jLgc6WRGujk5x' \

--data-raw '{

"type": "run",

"name": "search_todos",

"args": {"needle": "teeth"}

}'

[{"id":3,"body":"Brush your teeth","user":

{"name":"Alice"},"severity":"Medium","done":false}]

By understanding these concepts, you can effectively invoke procedures
through the ThingsDB API to execute various functionalities within your
applications.

16.4 MessagePack vs JSON for the API
While JSON is the most common data format used with the ThingsDB API, it
has limitations when handling binary data. Attempting to send binary data
directly within a JSON request will result in an error, as demonstrated in the
following example:

$ curl --location --request POST 'http://localhost:9210/thingsdb' \

--header 'Content-Type: application/json' \

--header 'Authorization: Bearer qOeH6Mny1jLgc6WRGujk5x' \

--data-raw '{

"type": "query",

"code": "bytes(\"Not supported by JSON\");"

}'

type `bytes` is not JSON serializable (-61)

One approach to solve this issue involves base64 encoding the binary data
before including it in a JSON request. However, this adds an extra step of
encoding and decoding, potentially impacting performance and code

208



readability. The following example demonstrates this approach using the
base64_encode() function:

$ curl --location --request POST 'http://localhost:9210/thingsdb' \

--header 'Content-Type: application/json' \

--header 'Authorization: Bearer qOeH6Mny1jLgc6WRGujk5x' \

--data-raw '{

"type": "query",

"code": "base64_encode(bytes(\"Conversion works!\"));"

}'

"Q29udmVyc2lvbiB3b3JrcyE="

ThingsDB offers MessagePack as a more efficient alternative. It is specifically
designed for binary data exchange and provides a more compact and efficient
way to transmit information compared to JSON.

While directly utilizing MessagePack with curl might involve additional tools,
here's a simple Python example showcasing its usage:

import requests

import msgpack

# Prepare data in MessagePack format

data = msgpack.packb({

"type": "query",

"code": "bytes('Works without conversion!');"

})

# Send request with appropriate headers

response = requests.post('http://localhost:9210//todos', data, headers={

"Content-Type": "application/msgpack",

"Authorization": "Bearer qOeH6Mny1jLgc6WRGujk5x"

})

# Unpack response and print the result

result = msgpack.unpackb(response.content)

print(result) # Prints: b'Works without conversion!'

For most situations, JSON remains the preferred choice due to its widespread
adoption and ease of use. However, for performance-critical scenarios with
substantial binary data exchange, consider MessagePack. Being ThingsDB's
internal format, data is already optimized for MessagePack, minimizing the
need for conversions compared to using JSON.

209



16.5 Quiz - Challenge Your Understanding
1. Which of the following security practices are NOT recommended for

securing a ThingsDB production environment?
a. Rename the admin user and change the password.
b. Remove the admin password and switch to token authentication.
c. Use dedicated accounts with limited privileges for specific tasks.
d. Leave the default admin account credentials unchanged.

2. ThingsDB is working on my computer but I cannot connect to the HTTP
API. The error message states "Failed to connect to localhost port
9210". Which of the following is most likely the reason?

a. The account does not have the appropriate access rights.
b. The API request is invalid.
c. The API is not enabled on port 9210.
d. Connecting to the API on localhost is not possible.

3. Which of the following URLs are valid to perform a query in the "foo"
collection?

a. http://thingsdb/foo

b. http://thingsdb/collection/foo

c. http://thingsdb//foo

d. http://thingsdb/foo/collection

e. The collection must be provided with the body, not the URL.

4. The procedure get_score exists in the //game scope and accepts a
user_id as argument. Fix the following API request to retrieve the score
for a user with ID 123:
GET http://thingsdb//game

{

  "type": "procedure",
  "name": "get_score",
  "args": [{"user_id": 123}]
}

5. Which of the following Media Types are supported by the ThingsDB
HTTP API for data exchange?

a. application/json
b. application/xml
c. text/csv
d. application/msgpack

210



16.5.1 Quiz - Answers

1. Option "d", "leave the default admin account credentials unchanged" is
the least secure practice among the choices. Using the default
credentials increases the risk of unauthorized access, as they are widely
known and easily guessable.

2. Answer "c". The most likely reason is that the API is not enabled on port
9210.

Use the node_info().load().http_api_port; query in the node scope to
confirm the currently configured port for the HTTP API.

If the API is disabled or the desired port is not 9210, start ThingsDB with
the environment variable THINGSDB_HTTP_API_PORT=9210. This will enable
the API on port 9210.

3. Both "b" (../collection/foo) and "c" (..//foo) are valid options, as
ThingsDB allows shortening the 'collection' term in the URL.

4. Fix the request:
a. Change method to POST.
b. Set type to "run" (indicating a procedure call).
c. Use either:

i. Positional args (e.g., [123]).
ii. Keywords (e.g., {"user_id": 123}).

Here's the corrected request:
POST http://thingsdb//game

{

  "type": "run",
  "name": "get_score",
  "args": {"user_id": 123}    // or [123]
}

5. Both "a" and "d". The supported Media Types for the HTTP API are:

application/json
application/msgpack

Both JSON and MessagePack are efficient formats for transmitting data
over the API. While JSON is the most commonly used option due to its
widespread adoption, MessagePack offers advantages in terms of
compactness and efficiency, especially when dealing with binary data.

211



Closing Note
This exploration of "Data as Code" has brought you on a journey through the
heart of ThingsDB. You've learned how this innovative platform allows you to
seamlessly combine data and code, empowering you to craft powerful,
flexible, secure and scalable applications.

As you venture beyond this book, remember that ThingsDB is an actively
evolving platform. Stay connected with ThingsDB's community and evolving
features! Explore the official documentation, engage in discussions on the
forum (https://github.com/orgs/thingsdb/discussions), and discover the latest
best practices to keep your ThingsDB knowledge sharp.

We are confident that you, armed with the knowledge from this book and the
power of ThingsDB, will embark on a journey of data-driven innovation,
shaping the future of information management and application development.

212

https://github.com/orgs/thingsdb/discussions


Appendix I - Chapter Data Import
This appendix helps you jump into Chapters 7-13 of this book, which build on
a to-do application using the "todos" collection. Whether you want to start a
specific chapter or just explore the application with pre-populated data, follow
these steps:

Switch to the /thingsdb Scope (using @t) and install the "requests" module (if
not already done):

(@t)> new_module("requests", "github.com/thingsdb/module-go-requests");

null

Create a new collection (replace "todos" if you prefer another name):

(@t)> new_collection("todos");

"todos"

Switch to the newly created collection scope:

(@t)> @ //todos

(//todos)>

Choose your starting chapter (7, 8, 9, 10, 11, 12, or 13):

(@t)> // Replace chapter9 with desired chapter number (7-13):

requests.get("https://docs.thingsdb.io/v1/book/chapter9.mp").then(|res| {

data = res.load().body;

import(data);

});

null

Ready to Go!

With these steps, you've imported the chapter data and can start exploring the
"todos" application from your chosen point.

213



Appendix II - Useful Links for ThingsDB

General information
ThingsDB Website
https://thingsdb.io
ThingsDB Source Code
https://github.com/thingsdb
ThingsDB Documentation
https://docs.thingsdb.io
ThingsDB Discussion Forum
https://github.com/orgs/thingsdb/discussions

Applications
ThingsGUI Application
https://github.com/thingsdb/ThingsGUI
ThingsPrompt Toolkit
https://github.com/thingsdb/ThingsPrompt

Connectors
Python Connector
https://github.com/thingsdb/python-thingsdb
Go Connector
https://github.com/thingsdb/go-thingsdb
C# Connector
https://github.com/thingsdb/ThingsDB-CSharp
PHP Connector
https://github.com/stefanak-michal/thingsdb-php
JavaScript/Node.js Connector
https://github.com/stefanak-michal/thingsdb.js
List of all connectors
https://docs.thingsdb.io/v1/connect/

Modules
Demo module
https://github.com/thingsdb/module-go-demo
Requests module

214

https://thingsdb.io/
https://github.com/thingsdb
https://docs.thingsdb.io/
https://github.com/orgs/thingsdb/discussions
https://github.com/thingsdb/ThingsGUI
https://github.com/thingsdb/ThingsPrompt
https://github.com/thingsdb/python-thingsdb
https://github.com/thingsdb/go-thingsdb
https://github.com/thingsdb/ThingsDB-CSharp
https://github.com/stefanak-michal/thingsdb-php
https://github.com/stefanak-michal/thingsdb.js
https://docs.thingsdb.io/v1/connect/
https://github.com/thingsdb/module-go-demo


https://github.com/thingsdb/module-go-requests
ThingsDB module
https://github.com/thingsdb/module-go-thingsdb
List of other modules maintained by the ThingsDB team
https://docs.thingsdb.io/v1/modules/supported-modules/

Deployment
Google Cloud Platform Deployment (Kubernetes, GKE)
https://github.com/thingsdb/ThingsDB/tree/main/gke#readme

Downloads
Docker Compose file
https://docs.thingsdb.io/v1/book/docker-compose.yml
Python Template file
https://docs.thingsdb.io/v1/book/template.py
Python Dashboard file
https://docs.thingsdb.io/v1/book/dashboard.py

215

https://github.com/thingsdb/module-go-requests
https://github.com/thingsdb/module-go-thingsdb
https://docs.thingsdb.io/v1/modules/supported-modules/
https://github.com/thingsdb/ThingsDB/tree/main/gke#readme
https://docs.thingsdb.io/v1/book/docker-compose.yml
https://docs.thingsdb.io/v1/book/template.py
https://docs.thingsdb.io/v1/book/dashboard.py


About the Author
Jeroen van der Heijden has been passionate about programming since his
early years, and has been actively contributing to the open-source world since
2012. He is the designer behind ThingsDB. His expertise extends beyond
ThingsDB, as he is also the maintainer of other projects like SiriDB (a high-
performance time-series database) and the "leri" language parsing libraries.

Currently, Jeroen's expertise drives innovation at Cesbit, where he leads the
development of InfraSonar (www.infrasonar.com), a infrastructure monitoring
solution that relies heavily on both ThingsDB and SiriDB.

Beyond ThingsDB, he enjoys coding in C/C++, Python and other languages.
When he's not coding, he spends time with his family or seeks thrills on the
open road or trails with his race or mountain bike.

216

https://infrasonar.com/


217


	Preface
	Installation
	Installation - Node
	Docker
	Linux
	Mac
	Windows (WSL)

	Installation - Python
	Installation - ThingsDB Prompt

	Getting Started - Initial Setup
	Chapter 1 - Introduction to ThingsDB
	1.1 Things and Why ThingsDB
	1.2 Code Blocks
	1.3 Variables and Properties
	1.4 Lazy Arguments Evaluation
	1.5 Query Response
	1.6 Scopes
	1.7 Quiz - Challenge Your Understanding
	1.7.1 Quiz - Answers


	Chapter 2 - Integers, Floating Points, Booleans, Strings and Nil
	2.1 Integers
	2.2 Floating Points
	2.3 Numeric Tools
	2.4 Boolean
	2.5 Strings
	2.5.1 String Methods
	2.5.2 Escaping and Multi-line Strings
	2.5.3 Concatenation and t-strings

	2.6 Nil
	2.6.1 Avoiding Ambiguity with Nil as a Placeholder

	2.7 Errors
	2.7.1 Capture Errors

	2.8 Quiz - Challenge Your Understanding
	2.8.1 Quiz - Answers


	Chapter 3 - Lists and Tuples
	3.1 Lists
	3.1.1 Bounds Checking
	3.1.2 Reference and Maintained Lists

	3.2 Nesting and tuples
	3.3 Looping Over a List or Tuple
	3.4 Specialized Methods
	3.5 Lists for Multi-Value Returns
	3.6 Quiz - Challenge Your Understanding
	3.6.1 Quiz - Answers


	Chapter 4 - Things
	4.1 Things for Descriptive Multi-Value Returns
	4.2 Thing IDs
	4.3 Control Response with return Statement
	4.4 Looping Over a Thing
	4.5 Value Restriction
	4.6 Self-References
	4.7 Quiz - Challenge Your Understanding
	4.7.1 Quiz - Answers


	Chapter 5 - Sets
	5.1 Set Operations
	5.1.1 Identifying Birds Not in the Zoo
	5.1.2 Selecting Warm-Blooded Animals in the Zoo

	5.2 Determining Set Membership and Supersets/Subsets
	5.2.1 Verifying Set Membership
	5.2.2 Checking Subsets and Supersets

	5.3 Copy or Reference
	5.4 Quiz - Challenge Your Understanding
	5.4.1 Quiz - Answers


	Chapter 6 - Procedures
	6.1 Side Effects and Changes
	6.2 Python
	6.2.1 Run Procedure
	6.2.2 Perform a Query
	6.2.3 Prevent Code Injections
	6.2.4 Migrating from Query to Procedure

	6.3 Requesting Procedure Information
	6.3.1 Extracting Properties from Information Objects
	6.3.2 Additional Procedure Functions

	6.4 Thinking Ahead
	6.5 Quiz - Challenge Your Understanding
	6.5.1 Quiz - Answers


	Chapter 7 - Typed Things
	7.1 Create Your First Type
	7.1.1 Enhancing the Todo Type using mod_type()
	7.1.2 Customizing ID Representation in Responses

	7.2 Collection Structure with Types
	7.3 Retrieving Typed Things by ID
	7.4 Type Methods
	7.5 Type Information
	7.6 Removing a Type
	7.6.1 Dependency Considerations

	7.7 More Definitions
	7.8 Quiz - Challenge Your Understanding
	7.8.1 Quiz - Answers


	Chapter 8 - Date, Time and Tasks
	8.1 Timestamps vs. Datetime
	8.1.1 Bridging the Gap Between Datetime and Timestamp

	8.2 Enhancing Todo with Datetime Properties
	8.3 Scheduling Code Execution with Tasks
	8.3.1 Cancel or Delete a Task
	8.3.2 Repeating Tasks
	8.3.3 Status for Repeating Task
	8.3.4 Deleting All Tasks with a Single Statement

	8.4 Farewell, done Property
	8.5 Quiz - Challenge Your Understanding
	8.5.1 Quiz - Answers


	Chapter 9 - Two-Way Links
	9.1 Introducing Relations
	9.2 Exploring More Relations
	9.2.1 One-on-One Relationship
	9.2.2 Many-to-Many Relationship

	9.3 Creating Relations: A Deeper Look
	9.4 Code Cleanup
	9.5 Quiz - Challenge Your Understanding
	9.5.1 Quiz - Answers


	Chapter 10 - Control Responses
	10.1 The Power of Wrap-Only Types
	10.2 Update Search To-do's
	10.3 Wrap Every-Thing
	10.4 Modifying Wrap-Only and Hide-ID Flags
	10.5 Quiz - Challenge Your Understanding
	10.5.1 Quiz - Answers


	Chapter 11 - Flags, Enumerators and Regex
	11.1 Crafting Your First Enumerator
	11.1.1 Setting the Default Member of an Enumerator
	11.1.2 Working with Enumerator Methods
	11.1.3 Retrieving Enumerator Members
	11.1.4 Enumerator Validation

	11.2 Enumerator Information
	11.2.1 Enumerator Members

	11.3 Modifying Enumerators
	11.4 Implementation and Other Enumerator Solutions
	11.4.1 Revisiting Range Definitions
	11.4.2 Regular Expressions using Regex
	11.4.3 Transitioning to the Enumerator
	11.4.4 Wrap-Only Types with Enumerators

	11.5 Understanding Flags
	11.5.1 Using Enumerators to Store Flags
	11.5.2 Working with Flags

	11.6 Quiz - Challenge Your Understanding
	11.6.1 Quiz - Answers


	Chapter 12 - Real-Time Data Updates with Events and Rooms
	12.1 Rooms
	12.1.1 Sending Your First Message via Events

	12.2 Listen for Events
	12.2.1 Creating Your Dashboard Listener

	12.3 Retrieving Initial Dashboard State
	12.3.1 Integration of the Initial State
	12.3.2 Implement Event Handlers
	12.3.3 Test Your Dashboard in Action!

	12.4 Room for More
	12.5 Quiz - Challenge Your Understanding
	12.5.1 Quiz - Answers


	Chapter 13 - Futures and Modules
	13.1 Demystifying Futures: Waiting with Purpose
	13.1.1 Using the Future's Task Result
	13.1.2 Empty Futures: Isolating Side Effects for Efficiency
	13.1.3 Caution! Futures Don't Always Behave Like Values

	13.2 Enhance Your ThingsDB with Modules
	13.2.1 Install The Demo Module
	13.2.2 Unleashing the Module's Power
	13.2.3 Sending NTFYs with the HTTP(S) Request Module
	13.2.4 Talking to Yourself: Connecting ThingsDB Scopes

	13.3 Managing Your Modules: Access, Updates, and More
	13.3.1 Controlling Module Access
	13.3.2 Multiple Configurations, Multiple Installations
	13.3.3 Keeping Your Modules Up-to-Date

	13.4 Quiz - Challenge Your Understanding
	13.4.1 Quiz - Answers


	Chapter 14 - Safeguarding Your Data
	14.1 Node Scopes for Backups
	14.2 Your First Backup
	14.3 Restoring Your Data
	14.3.1 Restoring Data from a Multi-Node Setup

	14.4 Automating Your Backups
	14.4.1 Ensuring Backup Health
	14.4.2 Google Cloud Storage

	14.5 Exporting and Importing Collections
	14.5.1 Exporting Collection Schemas

	14.6 Choosing Your Tool: Backups vs. Exports
	14.7 Quiz - Challenge Your Understanding
	14.7.1 Quiz - Answers


	Chapter 15 - Multiple Nodes and Debugging
	15.1 Scaling Up: Adding Nodes
	15.1.1 ThingsDB from Source
	15.1.2 Using Docker Compose

	15.2 Invite the New Node
	15.3 Node Counters
	15.4 Diving Deeper with Node Information
	15.5 New Version, Upgrade
	15.5.1 Understanding the HTTP Status Port
	15.5.2 Using the /ready URL
	15.5.3 Liveness and Readiness

	15.6 Data Related Debugging
	15.6.1 Checking References
	15.6.2 Finding Things
	15.6.3 Profiling Code Performance

	15.7 Quiz - Challenge Your Understanding
	15.7.1 Quiz - Answers


	Chapter 16: Unleashing the Power of the HTTP API
	16.1 Enabling the API
	16.2 Exploring Your First API Call
	16.2.1 Securing Admin Credentials
	16.2.2 Token Authentication

	16.3 Running Procedures with the API
	16.4 MessagePack vs JSON for the API
	16.5 Quiz - Challenge Your Understanding
	16.5.1 Quiz - Answers


	Closing Note
	Appendix I - Chapter Data Import
	Appendix II - Useful Links for ThingsDB
	General information
	Applications
	Connectors
	Modules
	Deployment
	Downloads

	About the Author

